a2 United States Patent

Chamieh et al.

US009424050B2

US 9,424,050 B2
*Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PARALLELIZATION AND
INSTRUMENTATION IN A PRODUCER
GRAPH ORIENTED PROGRAMMING
FRAMEWORK

Applicant: MUREX S.A.S., Paris (FR)

Inventors: Fady Chamieh, Paris (FR); Elias Edde,

Paris (FR)

Assignee: Murex S.A.S., Paris (FR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 385 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/669,837

Filed: Nov. 6, 2012

Prior Publication Data
US 2013/0061207 A1l Mar. 7,2013

Related U.S. Application Data

Continuation of application No. 11/607,196, filed on
Dec. 1, 2006, now Pat. No. 8,307,337.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 11/34 (2006.01)

U.S. CL

CPC GO6F 9/4428 (2013.01); GOGF 9/4436

(2013.01); GO6F 11/3404 (2013.01); GO6F
1173419 (2013.01); GO6F 11/3495 (2013.01);
GO6F 11/3428 (2013.01); GO6F 2201/865
(2013.01)
Field of Classification Search
USPC 717/119
See application file for complete search history.

OBJECT-ORIENTED SOURCE CODE 100
CLASS DEFINITION 102

A GIVEN METHOD 104

EXECUTION MODE
SETTINGS 105 (DEFINED BY
PROGRAMMER; ONE OF A
SET OF SUPPORTED WAYS

OF EXECUTION, E.G., LOCAL
EXECUTION,
MULTIPROCESSING, AND
MULTITHREADING

[PRODUCER DEPENDENCY |
DECLARATION 106 FOR THE
GIVEN METHOD, WHERE THE
PRODUCER DEPENDENCY
DECLARATION IDENTIFIES AT
RUNTIME THAT THE OUTPUT
OF A GIVEN PRODUCER
DEPENDS ON QUTPUTS OF A

SET OR ZERO OF MORE OTHER
PRODUCERS, WHERE A
PRODUCER IDENTIFIES AT
LEAST A CLASS, AN INSTANCE
OF THAT CLASS, AND A
METHOD ASSQCIATED WITH
THAT INSTANCE

Y
PRODUCER 110
i
t
!
'
|

H
i
i \
H N
i i
i H
;
SET OF ZERO OR MORE
PRODUCERS 112

(56) References Cited

U.S. PATENT DOCUMENTS
4,558,413 A

5,133,063 A
5,155,836 A

12/1985 Schmidt et al.
7/1992 Naito et al.
10/1992 Jordan et al.

(Continued)

FOREIGN PATENT DOCUMENTS

BR
CN

PIO719730 A2 3/2014
101589366 B 11/2013

(Continued)
OTHER PUBLICATIONS

Second Office Action, Chinese Application No. 200780050449.7,
dated Mar. 4, 2013, 8 pages.

(Continued)

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — NDWE LLP

(57) ABSTRACT

Embodiments of parallelization and/or instrumentation in a
producer graph oriented programming framework have been
presented. In one embodiment, a request to run an application
program is received, wherein object-oriented source code of
the application program includes methods and producer
dependency declarations, wherein the producer dependency
declaration for a given method identifies a set of zero or more
producers with outputs that are an input to the given method,
wherein a producer is at least an instance and a method
associated with that instance. Further, execution of the appli-
cation program may be parallelized based on dependency
between producers of the application program using the runt-
ime. In some embodiments, the application program is instru-
mented using the runtime.

22 Claims, 57 Drawing Sheets

B,

SET OF ZERO OR MORE
PRODUCERS 114

g

US 9,424,050 B2

Page 2
(56) References Cited 2004/0205524 Al 10/2004 Richter et al.
2004/0221262 Al 11/2004 Hampapuram et al.
U.S. PATENT DOCUMENTS 2004/0230770 Al 11/2004 Odani et al.
2004/0258187 Al 12/2004 Jeong etal.
5313,387 A 5/1994 McKeeman et al. 2004/0268327 Al 12/2004 Burger et al.
5371851 A 12j1994 P“;{PeretlaL 2005/0015353 Al 1/2005 Kumar et al.
g’jé?’gig: ‘1‘/}332 IS(T) C{O‘;i*; 2005/0081105 Al 42005 Wedel et al.
5481741 A /1096 McKaskle ef al 2005/0097464 Al 5/2005 Graeber et al.
5.490.246 A 2/1996 Brotsky etal. 2005/0114842 Al 5/2005 Fleehart et al.
5.497.500 A 3/1996 Rogers et al. 2005/0125776 Al 6/2005 Kothari et al.
5,504,917 A 4/1996 Austin 2005/0149908 Al* 7/2005 Klianev ... GOGF 9/5038
5,524,205 A 6/1996 Lomet et al. 717/109
5,652,909 A 7/1997 Kodosky 2005/0160415 Al 7/2005 Kwon et al.
5,659,747 A 8;1997 Nakajima | 2005/0182782 Al /2005 Anderson
3,758,160 A~ 5/1998 Mclnerney et al. 2005/0210445 Al 9/2005 Gough et al.
5,819,293 A 10/1998 Comer et al. .
5822593 A 10/1998 Lamping et al 2005/0246681 Al 11/2005 Little et al.
5.838.976 A * 11/1998 SUMELS ..oovroreroocooo. 717/130 2005/0273773 Al 122005 Gold etal.
5,883,623 A 3/1999 Cseri et al. 2006/0004851 Al 1/2006 Gold et al.
5,893,123 A 4/1999 Tuinenga et al. 2006/0015857 Al 1/2006 Gold et al.
5,966,072 A * 10/1999 Stanfill etal. 340/440 2006/0053414 Al 3/2006 Bhandari et al.
5,978,830 A * 11/1999 Nakayaetal. 718/102 2006/0059461 Al 3/2006 Baker et al.
5,990,906 A 11/1999 Hudson et al. 2006/0074866 Al 4/2006 Chamberlain et al.
g’ggg’ggzﬁ %333 gﬁssabgl et al. 2006/0075383 Al 4/2006 Moorthy et al.
C067415 A 512000 Uc*}ll‘i‘}%i};ge“y 2006/0080660 Al* 4/2006 Radhakrishnan 718/100
6:145:121 A 11/2000 Levy et al. 2007/0234276 Al* 10/2007 Ofttonietal. 717/104
6.223,171 Bl 4/2001 Chaudhuri et al. 2008/0094399 Al 4/2008 Heinkel et al.
6,233,733 Bl 5/2001 Ghosh 2008/0098375 Al* 4/2008 Isardoccovrrvomneeen. 717/149
6,385,770 Bl 5/2002 Sinander 2008/0134138 Al 6/2008 Chamich et al.
6,407,753 Bl 6/2002 Budinsky et al. 2008/0134152 Al 6/2008 Edde et al.
6427234 Bl 7/2002 Chambers et al. 2008/0134161 Al 6/2008 Chamich et al.
6,493,868 Bl 12/2002 Dasilva et al. .
6571388 Bl 5/2003 Venkstraman et al 2008/0134207 Al 6/2008 Chamich et al.
6618851 Bl 9/2003 Zundel et al. ’ 2012/0266146 Al 10/2012 Chamich et al.
6,665,866 Bl 12/2003 Kwiatkowski et al. 2013/0061207 Al 3/2013 Chamieh et al.
6,763,515 Bl 7/2004 Vazquez et al. 2013/0104109 Al 4/2013 Edde et al.
6,826,523 Bl 11/2004 Guy et al. 2013/0232475 Al 9/2013 Chamich et al.
6,826,752 B1* 11/2004 Thornley et al. 718/100 2014/0137086 Al 5/2014 Chamieh et al.
6,889,227 Bl 5/2005 Hamilton et al.
6,957,191 Bl 10/2005 Belcsak et al.
6,959,420 Bl 10/2005 Hatcher et al. FOREIGN PATENT DOCUMENTS
6.966,013 B2 11/2005 Blum etal. N 101601012 B -
6,995,765 B2 2/2006 Boudier
CN 101617292 B 9/2014
7,017,084 B2* 3/2006 Ngetal ..cccoommrrrrii. 714/45
EP 0777181 Al 6/1997
7,039,923 B2 5/2006 Kumar et al.
. ar EP 0883057 A2 12/1998
7,055,130 B2* 5/2006 Charisius etal. 717/108
EP 1942411 A2 7/2008
7,096,458 B2 8/2006 Bates et al.
> EP 1942411 A3 7/2008
7,143,392 B2 11/2006 Tietal.
EP 1952216 /2008
7,200,838 B2 4/2007 Kodosky et al.
! EP 1958062 Bl 7/2009
7,203,743 B2 4/2007 Shah-Heydari
hah- EP 1942411 Bl 2/2012
7,299,450 B2 11/2007 Livshits et al.
EP 2041655 Bl 3/2014
7367,015 B2 4/2008 Evans et al.
v EP 2365435 Bl 4/2014
7,831,956 B2 11/2010 Kimmerly
; EP 2365436 Bl 7/2014
7,865,872 B2 1/2011 Chamich et al.
EP 1952216 Bl 9/2014
7,917,898 B2 3/2011 Zhao etal.
C p 06-332785 12/1994
8,191,052 B2 5/2012 Chamich et al.
! P H07-013766 A 1/1995
8,307,337 B2 11/2012 Chamich et al.
P 2000514219 A 10/2000
8,332,827 B2 12/2012 Edde et al.
C p 2001005678 A 1/2001
8,607,207 B2 12/2013 Chamich et al.
! P 5354601 B2 11/2013
8,645,929 B2 2/2014 Chamich et al.
P 5354602 B2 11/2013
9,201,766 B2 12/2015 Edde et al.
i P 5354603 B2 11/2013
2001/0001882 Al 5/2001 Hamilton et al. RU 306115 Ca 62003
2002/0072890 Al 6/2002 Crouse, I et al. RU 5245578 C2 112002
2002/0184401 Al 12/2002 Kadel et al.
2002/0188616 Al 12/2002 Chinnici et al. RU 2435201 €2 11/2011
2003/0014464 Al 1/2003 Deverill et al. RU 2438161 C2 12/2011
2003/0033132 Al 2/2003 Algieri et al. RU 2445682 C2 3/2012
2003/0084063 Al 5/2003 DelMonaco et al. WO 9800791 Al 1/1998
2003/0084425 Al 5/2003 Glaser WO 0101206 A2 1/2001
2003/0106040 Al 6/2003 Rubin et al. o) 0201359 A2 1/2002
2003/0145125 Al 7/2003 Horikawa o) 2005121954 Al 12/2005
2004/0073892 Al 4/2004 Fallah et al. o) 2008064899 A2 6/2008
2004/0143819 Al 7/2004 Cheng et al. o) 2008064899 A3 6/2008
2004/0154008 Al* 8/2004 Bakcccoovvovnreenn. GOGF 9/4431 o) 2008064900 A2 6/2008
717/151 o) 2008064901 A2 6/2008
2004/0172626 Al 9/2004 Jalan et al. o) 2008064901 A3 6/2008

US 9,424,050 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO 2008064902 A2 6/2008

WO 2008064902 A3 6/2008

WO 2008064900 A3 7/2008
OTHER PUBLICATIONS

Non-Final Office Action, U.S. Appl. No. 13/840,900, dated Jul. 16,
2013, 48 pages.

Third Office Action, Chinese Application No. 200780050596 .4,
dated Aug. 6, 2013, 13 pages.

Decision of Grant, Japanese Application No. 2009538644, dated
Aug. 5, 2013, 3 pages.

Decision of Grant, Japanese Application No. 2009538645, dated
Aug. 5, 2013, 3 pages.

Decision of Grant, Japanese Application No. 2009538646, dated
Aug. 5, 2013, 3 pages.

Third Office Action, Chinese Application No. 200780050659.6,
dated May 28, 2013, 7 pages.

Communication under Rule 71(3) EPC, European Application No.
07856310.3, dated Apr. 19, 2013, 241 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050449.7, dated Aug. 28, 2013, 4 pages.

Notice of Allowance, U.S. Appl. No. 13/455,756, dated Oct. 1,2013,
70 pages.

Notice of Allowance, U.S. Appl. No. 13/840,900, dated Oct. 10,
2013, 30 pages.

Communication under Rule 71(3) EPC, European Application No.
07856310.3, dated Sep. 27, 2013, 240 pages.

Fourth Office Action, Chinese Application No. 200780050659.6,
dated Nov. 5, 2013, 8 pages.

Communication under Rule 71(3) EPC, European Application No.
11167918.9, dated Oct. 7, 2013, 241 pages.

Communication under Rule 71(3) EPC, European Application No.
11167913.0, dated Oct. 11, 2013, 245 pages.

Communication under Rule 71(3) EPC, European Application No.
07856311.1, dated Oct. 14, 2013, 179 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050596 4, dated Dec. 3, 2013, 4 pages.

Communication under Rule 71(3) EPC, European Application No.
07856311.1, dated Apr. 3, 2014, 179 pages.

Fifth Office Action, Chinese Application No. 200780050659.6, dated
Mar. 4, 2014, 3 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050659.6, dated Jun. 9, 2014, 4 pages.

Communication under Rule 71(3) EPC, European Application No.
11167918.9, dated Feb. 18, 2014, 241 pages.

Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No. 11167918.9, dated Jul. 3, 2014, 2 pages.
Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No. 07856310.3, dated Feb. 20, 2014, 2 pages.
Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No.07856311.1, dated Aug. 28,2014, 2 pages.
International Preliminary Report on Patentability, PCT/EP2007/
010409, dated Jun. 3, 2009, 15 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010407, dated Jun. 3, 2009, 13 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010410, dated Jun. 3, 2009, 9 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010408, dated Jun. 3, 2009, 9 pages.

Non-Final Office Action, U.S. Appl. No. 11/607,216, dated Apr. 8,
2010, 35 pages.

Mohan et al., “Efficient Commit Protocols for the Tree of Processes
Model of Distributed Transactions,” ACM, New York, NY, USA, vol.
19, Issue 2, Apr. 1985, pp. 40-52.

Jagadish et al., “Recovering from Main-Memory Lapses,” Citeseer,
1993, pp. 1-16.

1st Examination Report, FEuropean Patent Application No.
07254672 .4, dated May 19, 2009, 8 pgs.

Result of Consultation, European Patent Application No. 07254672.
4, dated Sep. 24, 2010, 15 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07254672.4, dated Jun. 28, 2010, 11 pgs.

1st Examination Report, FEuropean Patent Application No.
07856310.3, dated May 15, 2009, 9 pgs.

Result of Consultation, European Patent Application No. 07856310.
3, dated Sep. 24, 2010, 3 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07856310.3, dated Jun. 29, 2010, 10 pgs.

1st Examination Report, FEuropean Patent Application No.
07856311.1, dated May 28, 2009, 8 pgs.

Result of Consultation, European Patent Application No. 07856311.
1, dated Sep. 24, 2010, 3 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07856311.1, dated Jun. 29, 2010, 11 pgs.

Bill Venners, “The Linking Model”, Inside the Java Virtual Machine,
Chapter 8, 1999, pp. 1-61, reprinted from http://www.artima.com/
insidejvm/ed2/linkmodP-html on Sep. 20, 2010, Tata McGraw-Hill.
Bill Venners, “Thread Synchronization”, Inside the Java Virtual
Machine, Chapter 20, pp. 1-11, reprinted from http://www.artima.
com/insidejvm/ed2/threadsynchPhtml on Sep. 20, 2010.

Notice of Allowance, U.S. Appl. No. 11/607,216, dated Nov. 19,
2010, 29 pages.

Official Action, Russian Application No. 2009125011, dated Oct. 13,
2010, 12 pages.

Official Action, Russian Application No. 2009125050, dated Oct. 4,
2010, 25 pages.

Official Action, Russian Application No. 2009125013, dated Nov.
13, 2010, 17 pages.

Decision on Grant, Russian Application No. 2009125050, dated May
23, 2011, 27 pages.

Decision on Grant, Russian Application No. 2009125011, dated Jun.
21,2011, 22 pages.

Extended European Search Report, Application No. 11167913.0,
dated Oct. 24, 2011.

Rong Zhou et al., “Breadth-first heuristic search”, pp. 385-408, Dec.
1, 2004, Artificial Intelligence 170 (2006), Elsevier B.V.

Decision on Grant, Russian Application No. 2009125013, dated Oct.
4, 2011, 26 pages.

Extended European Search Report, Application No. 11167918.9,
dated Nov. 7, 2011.

Communication under Rule 71(3), Furopean Application No.
07254672 .4, dated Sep. 6, 2011.

Non-Final Office Action, U.S. Appl. No. 11/607,196, dated Dec. 21,
2011, 49 pages.

Non-Final Office Action, U.S. Appl. No. 11/607,199, dated Jan. 9,
2012, 37 pages.

Jane Cleland-Huang et al., “Event Based Traceability for Managing
Evolutionary Change”, Sep. 2003, 15 pages, IEEE Transactions on
Software Engineering, vol. 29, No. 9, IEEE Computer Society.
Communication pursuant to Article 94(3) EPC, European Applica-
tion No. 07856311.1, dated Jul. 25, 2011, 7 pages.

Communication pursuant to Article 94(3) EPC, European Applica-
tion No. 07856310.3, dated Jul. 25, 2011, 8 pages.

Notice of Allowance, U.S. Appl. No. 11/633,098, dated Feb. 29,
2012, 42 pages.

Decision to grant a European patent pursuant to Article 97(1) EPC,
Application No. 07254672 4, dated Jan. 26, 2012, 2 pages.

First Office Action, Chinese Application No. 200780050596 .4, dated
Feb. 29, 2012, 8 pages.

First Office Action, Chinese Application No. 200780050449.7, dated
Apr. 6, 2012, 19 pages.

First Office Action, Chinese Application No. 200780050659.6, dated
Apr. 23,2012, 11 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538645, dated Jul. 5, 2012, 7 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538644, dated Jul. 5, 2012, 5 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538646, dated Jul. 5, 2012, 5 pages.

Notice of Allowance, U.S. Appl. No. 11/607,196, dated Aug. 14,
2012, 21 pages.

US 9,424,050 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Notice of Allowance, U.S. Appl. No. 11/607,199, dated Sep. 26,
2012, 22 pages.

Second Office Action, Chinese Application No. 200780050659.6,
dated Dec. 25, 2012, 9 pages.

Second Office Action, Chinese Application No. 200780050596 4,
dated Jan. 24, 2013, 14 pages.

“A Typesafe Enum Facility for the Java Progamming Language:
Proposed Final Draft,” Jul. 12, 2004, 6 pages, Sun Microsystems,
Inc., Palo Alto, California.

“An enhanced for loop for the Java Programming Language, Pro-
posed Final Draft,” Jul. 12, 2004, 4 pages, Sun Microsystems, Inc.,
Palo Alto, California.

“Autoboxing and Auto-Unboxing support for the Java Programming
Language, Proposed Final Draft,” Jul. 12, 2004, 7 pages, Sun
Microsystems, Inc., Palo Alto, California.

“Dataflow language,” Nov. 25, 2006, S pages, downloaded from
http://en.wikipedia.org/w/index.php?title=Dataflow__language
&printable=yes on Nov. 29, 2006.

“Dataflow language,” 4 pages, downloaded from http://www.an-
swers.com/main/ntquery?tname=dataflow%?2Dlanguage
&print=true on Nov. 29, 2006.

“Dataflow Programming,” Apr. 24, 2005, 2 pages, downloaded from
http://c2.com/cgi/wiki?DataflowProgramming on Nov. 29, 2006.
“Javadoc—The Java API Documentation Generator,” 2002, 54
pages, Sun Microsystems, Inc., downloaded from http://java.sun.
com/j2se/1.5.0/docs/tooldocs/windows/javadoc.html on Nov. 28,
2006.

“JSR175: A Program Annotation Facility for the Java™ Program-
ming Language: Proposed Final Draft,” Aug. 12,2004, 12 pages, Sun
Microsystems, Inc., Palo Alto, California.

“LabVIEW FAQs,” 2006, 3 pages, National Instruments Corpora-
tion, downloaded from http://www.ni.com/labview/faq.htm on Nov.
29, 2006.

“LabVIEW,” Nov. 24, 2006, 8 pages, downloaded from http://en.
wikipedia.org/w/index.php?title=LabVIEW &printable=yes on Nov.
29, 2006.

“LUCID (ID:960/1luc002) dataflow language,” 9 pages, downloaded
from http://hopl.murdoch.edu.au/showlanguage?2.prx?exp=960 on
Dec. 1, 2006.

“Quals: Programming Languages,” Jan. 1, 2005, 43 pages, down-
loaded from http://www.cs.wm.edw/~coppit/wiki/index.
php?title=Quals: _Programming_ Languages&printable=yes on
Dec. 1, 2006.

“Visual programming language,” Nov. 29, 2006, 4 pages, down-
loaded from http://en.wikipedia.org/w/index.php?title=Visual__pro-
gramming_ language&printable=yes on Nov. 29, 2006.

Gilad Bracha et al., “Adding Generics to the Java Programming
Language: Participant Draft Specification,” Apr. 27, 2001, 18 pages.
Command pattern, Nov. 18, 2006, 7 pages, downloaded from http://
en.wikipedia.org/w/index php?title=Command__pattern
&printable=yes on Nov. 29, 2006.

Martin Fowler, “Inversion of Control Containers and the Dependency
Injection pattern,” Jan. 23, 2004, 21 pages, downloaded from http://
martinfowler.com/articles/injection.html on Aug. 6, 2006.

James Gosling et al., “The Java Language Specification, Third Edi-
tion,” May 2005, 684 pages, Addison-Wesley.

Finn Haugen, “Introduction to LabVIEW Simulation Module 2.0,”
Oct. 29, 2006, 28 pages, downloaded from http://techteach.no/pub-
lications/labview/sim__module/2_ 0/index.htm on Nov. 29, 2006.
Hibernate 3.0, 2005, 4 pages, JBoss Inc.

Hibernate Annotations, Reference Guide, Version: 3.2.0 CR1, May
13, 2006, 57 pages.

Hibernate EntityManager, User Guide, Version: 3.2.0 CR1, May 13,
2006, 52 pages.

Hibernate Reference Documentation, Version: 3.1.1, Jan. 18, 2006,
223 pages.

Hibernate Tools, Reference Guide, Version: 3.1.0.beta5, Aug. 22,
2005, 43 pages.

Invitation to Pay Additional Fees (includes Partial International
Search Report), PCT/EP2007/010407, dated Jun. 10, 2008, 5 pages.
ISR and Written Opinion, PCT/EP2007/010407, dated Oct. 24,2008,
19 pages.

ISR and Written Opinion, PCT/EP2007/010408, dated Jun. 10, 2008,
13 pages.

ISR and Written Opinion, PCT/EP2007/010409, dated Jun. S, 2008,
23 pages.

International Search Report and Written Opinion, Application No.
PCT/EP2007/010410, dated Jun. 4, 2008, 14 pages.

Rod Johnson et al., “Spring, java/j2ee Application Framework, Ver-
sion 2.0 MS5,” 2004-2006, 442 pages.

Rod Johnson, “Introduction to the Spring Framework,” May 2005, 27
pages, downloaded from http://www.theseverside.com/tt/articles/
content/SpingFramework/article.html on Jun. 19, 2006.

Memento pattern, Nov. 20, 2006, 3 pages, downloaded from http://
en.wikipedia.org/w/index php?title=Memento__pattern
&printable=yes on Nov. 29, 2006.

NHibernate Reference Documentation, Version: 1.0.2, Jan. 15, 2006,
151 pages.

Partial European Search Report, Application No. 07254672.4, dated
Jun. 12, 2008, 17 pages.

Seam—Contextual Components, A Framework for Java EE 5, Ver-
sion: 1.0.CR2, Apr. 2006, 138 pages.

Erich Gamma et al., “Design Patterns—Flements of Reusable Object
Oriented Software,” Addison Wesley, 1995.

Mark Grand, “Patterns in Java,” Wiley Computer Publishing, 1998.
Non-Final Office Action, U.S. Appl. No. 13/710,372, dated Dec. 30,
2014, 50 pages.

Non-Final Office Action, U.S. Appl. No. 14/160,271, dated Sep. 1,
2015, 58 pages.

Notice of Allowance, U.S. Appl. No. 13/710,372, dated Aug. 10,
2015, 8 pages.

Bill Venners, “The Java Virtual Machine,” 1999, 49 pages, Inside the
Java Virtual Machine, Chapter 5, downloaded from http://www.
artima.com/insidejvm/ed2/jvmPhtml on Nov. 20, 2015.

Bill Venners, “The Lifetime of a Type,” 1999, 27 pages, Inside the
Java Virtual Machine, Chapter 7, downloaded from http://www.
artima.com/insidejvm/ed2/lifetypePhtml on Nov. 20, 2015.

Bill Venners, Inside the Java Virtual Machine, 1998, 220 pages,
Chapters 1, 5, 7, 8, and 19, The McGraw-Hill Companies, Inc.
Final Office Action, U.S. Appl No. 14/160,271, dated Mar. 10, 2016,
22 pages.

Bill Venners, Inside the Java Virtual Machine, 1999, 178 pages,
Second Edition, Chapters 5, 7, and 8, The McGraw-Hill Companies,
Inc.

* cited by examiner

US 9,424,050 B2

Sheet 1 of 57

Aug. 23, 2016

U.S. Patent

VI 2d4NDI14

¢l S¥I2Naodd
JAOW JO O¥HZ 40 14S

P11 SY32NA0Ud
HIOW 4O 0d4dZ 40 L3S

% ™ 801 (VILVQ)

HONV.LSNI

JONV.LSNI.LVHL

HLIM 4LVIDOSSY JOHLINW

V ANV ‘SSVTIO LVHL 40
HONVLSNINV ‘SSY10 V LSVAT
LV SHILNIAI 90Naodd

vV TIFHM ‘S4F0NA0Ud

YIHLO HIOW 40 OUdZ YO L3S
Vv 40 SLNd.LOO NO SANAdAd
YI401d0dd NIAID V 4O
1Nd1LNO FHL LVHL HANILNOY
LV SHIEILNAAI NOILLVIVI0dd
ADNHANAAJ ¥90Nd0dd
dHL FIIHM ‘AOHLIN NAAID
HHL ¥04 901 NOLLVIVTIOHA
AINAANAIIT ATINAO0U

ONIAVAYHLILINA
ANV ‘ONISSTD0YJIL TN
‘NOLLNDAXT

Tv201“Dd ‘NOILNDAXA 40
SAVM d4140ddNS 40 L3S
V 40 ANO YAWAVIDOUd
A9 @@NIZAQ@ S01 SONILLAS
FAOW NOILNDIXA

¥01 JOHLAW NJAID V

€01 NOILLINIJAA SSVTD

001 30D 4OYNOS d4LNATIO-1.Od(4d0

US 9,424,050 B2

Sheet 2 of 57

Aug. 23, 2016

U.S. Patent

m 4901 NOILVIVTOH
m>OZmQZmﬁ_mD~_mODQO~E

an)

moo_zo:%dmo
AJDNAANIdAA ¥FONA0Ud m_"

m asol NOILVAVTIDdId
m>UZmEZmEmQMmODQOM

=9

- ~

~ .

g1 TANDIA

! 2901 NOILLVYEVIOdd
m>OZmDZmEmDMmUDQO~E

4901 NOLLVYVTOdd
AINHANIIA d9DNd0dd

V901 NOILVYIVTOdd
ADNIANAJIA d92NA0dd

V0l AOHLIN

V201 NOLLINIAAd SSV1D

US 9,424,050 B2

Sheet 3 of 57

Aug. 23, 2016

U.S. Patent

= 4901 NOWVEVIOAA §1 e

| | AONEONZdEQ¥EON@oud || el

| s ' J SN

= 4%01 QOHLAW b, Toae., OMEEOOM _
T SwowNEEgssD | D) — NI o
L T Y AN EI | AONEANEdd ¥90NA0¥d |
L ECEEEEEEEERY) \ kbbbt ti bt “
o 901 NOILVYVTO4A | | H Ov01 QOHLAN |
| | AONIANAJId ¥IONAOU ! ! \\-.»--/4 N e EiEl} SIIIIIIIIIIIIIIIIIIIIIIIIIIIILL
s AC_IVETIE 4 m €901 NOLLY¥VIJEA |
= 301 GOHLIN |) | AONEONZddd ¥EDNA0N |

V901 NOLLVIVTOdd
AONIANdd3d d35Na0dd

asol NOILVEV1OAd

AJNIANIdId Y90Nd0Ud V¥01 AOHLIW

L e e e e e V201 NOLLINIZAd SSVID

US 9,424,050 B2

Sheet 4 of 57

Aug. 23, 2016

U.S. Patent

m 4901 NOLLVYVY104dd
mSZmozEma%o:aoﬁ

P 601 AOHLAW ! Sveen T U _
e S v O80L | | 091 NOILYNY104d |
,OWINOILINLEASSYT) ¢ e N * | AONIANIdIQ ¥IINA0U |
S T U R]
Do 4901 NOLLV¥VTIOAA ;! A M @ ! Or01 AOHLAN
' 1 AONAANAJAd ¥30NA0Hd v . IN] _HHHHHHHHHHHHHHHHM
et te et hte ettt ! 4901 NOILVIV104d |
m ar01 QOHLAN AONAANAdId ¥40NA0Ud !
€07 QOHLAN |

VY901 NOLLVYVY10dd
L e e e e ADNAANALAJ J30Na0dd
I P ot conn
m,------mw_-%._m%mﬁ._...mm@.- V201 NOLLINIZEd SSV1D

1 ANO1A

US 9,424,050 B2

J901 NOILVAEVIDad
ADNIANAdId ¥301Nd0Ud

Jr01 AOHLANW

901 NOLLVYVTIDdd
ADNHANAEd ¥92Na0dd

Sheet 5 of 57

4r01 AOHLINW

V90[NOLLVIVTIOHA
AJNAANIdIa Y30Nd0Ud

Aug. 23, 2016

V0l AOHLIN

IS

V701 NOILINIAFd SSVID

U.S. Patent

US 9,424,050 B2

Sheet 6 of 57

Aug. 23, 2016

U.S. Patent

LSHE Ve TINOIL
FINAON DAXA TYIOT
 Tshe TTNAOW
. L 0¢e SUTDINA0Ed A0¥N0S 40 LNd1NO
$Sve TTNAON I [THTIVEV | [*]
i [€€ TNAON dN _v\
: $VE TINAOIN 0AXA HAVEO YIONA0¥d
ﬁ ¥8€ DNIHDVD LNdLNO ¥ADNAOUd g
i - s) $T€ LSHYALINI
! 08¢ HANLONALS (S/HIVED dHINA0Ud JO IV SINdINO ASOHM SYTINA0Nd
! L) UOW YO ANO 40 LAS INAUAND
N 0t TTNAOW NOTLVIINTD
HdVYED d30Nd0¥d dAIVINOLNY (| 0% 9000 EOUN0S AALNANOTLOAIHO
T THOddAS DI ID06d NI SAOHLAN YOI SNOLLYYVIDAd
JALNARO HAVID ¥ADNAONd HLIM ANLLNN AINHANEdEA dH0NAO0Ud
ZANOIA
1012 SQOHLAIN

07¢ LJdOddNS DNINIWVIDOYd AHINARRO
HAVID d49NAd0dd HLIA GINLLNMY

J0OA SNOLLVIVIDAd ADNAJANAdId 440N1d0dd
HIIM 300 NOILVII'TddV A4 LNATJO-LDd[90

VOI¢ SQOHLAN
JOd SNOLLVIVTOAd ADNHANIdAd YHDN1d0Odd
HLIM 4O NOLLVOI'lddV G4 INAIHO-LDATd0

US 9,424,050 B2

Sheet 7 of 57

Aug. 23, 2016

06£ ATNAOW 1LNdLNO YIINAOYd FATYINO
e o T
i 1Nd1NO ¥IINAOUd ! C110 SINALNO ¥90NA0¥d NHAATTEIAO |
“ QOI;—..MZ WQEW\/O m “ >r_kv—m—n—0m& " “ S RGLCCE LR LR R e PP EE PR R P EE R
e H AANTIIA0 ¥
LececcmcmeceseeeeapacmeeeeemeamecIIIIIIIIIIIIFIZIIIzIIII00Y
{TT96€ 00T A_
(A0
y d€ TANDOIA
0LS < 25€ 4000 2¥NOS NI L3S SYIINA0Hd
i1 2INAOW NOILNDAXE HAVUD ¥AINAOUd INIANHAdIANT 40 S1NdLNO
m \ \\lllllllllllllll-l'l-'ly/
" p8EONIHOVO |i Z8E DNDRIVW | 0S¢ SYTONAOUd AOUNOS 40 LNdLNO
m LNd1No | NOLLNOAXd |
m ¥gONAOYd |i TVINAWHAONI |
S 08€ TINLOMILS (S)HAVED ¥HONAOU g cZ€ LSTHALNI
m 5 40 TIV SLNLNO ISOHM SYIONAOUd
m \ TIOW A0 ANO 40 19S LNTIND
N $9¢ ITNAON NOILVHINAD
HdVID ¥951d0dd Q4LYWOLNY (| 0% 8000 30¥N0S QILNARIO-LOAITO
NI SGOHLAN Y04 SNOILVYV1DAA
09€ L¥0ddNS ONINNYYO0Ud X ONAINALE HAONAOUd
@4LNANO HdVED ¥IDNA0¥d HLIM TATINNY

U.S. Patent

US 9,424,050 B2

Sheet 8 of 57

Aug. 23, 2016

U.S. Patent

CEIEI(e(0)4N
44 OL 440Nd0¥d 40 LNd.LNO SNVO

€ Y40Naoud

LSTYILNI
40 LNdLN0 INTHIND LHD OL HdVHED NI
SYEDNAOAd AHLOVANI A'INO FLADIXH-3d

$¥IdNA0Ad
. _ ¢ d4oN1do0dd

\ OF TANOIA
[¥90NA0Ud

$ ¥421d0¥d ¥ 4420100dd

£ 440Nd0Ad . _ £ 440Ndodd _ -

’ \ db TANOL
LSTYILNI | ¥90NA0¥d

40 LNdLNO INTHINI 13D OL HdVdD Vi TINDIA

¥ 4g42Nd0dd

NI S432Nd0dd 40 NOILNDAXHA TVILINI
¢ 440NAa0dd ¥ 490Na0dd

SYA0NA0™d 408N0S
£ ¥3INA0Nd /S430NA0U -
LIVLS NOILLNOTXd
—

2 4d0Naodd
[¥ADNAodd K HdVID Y42Ndodd

LSTIHLNI O ST.LN4LNO aTINg/A9dA0DSIa
HSOHM ¥IDNAdO0Ad OL LdNALLY
QHLOdTdS ATINTIND

US 9,424,050 B2

Sheet 9 of 57

Aug. 23, 2016

U.S. Patent

J3141dON 34 OL
Y30NdOo¥d J0 LNJLNO ISAVO

¢ ¥40N1daodd ¥ 440Nd0dd
dAIIIAON 34 O1 ¥351d0dd ¢ 440N1dodd
40 10Nd.LOO ISNVO

\ 4 ANOL
1 ¥40NA0ud

¢ ¥40NAO0Ud ¥ 4d40Naodd
£ 49DNA0Ud AHIAONW 34 OL ¥40Nd0dd 2 ¥90Na0¥dd
40 LN4LNO HSNVD

\ Qv TANOL
[490NA0¥d

LSHYHLNI 40 LNdLNO LNJJAND LD OL HdVID
NI SY92NA0dd d41OVJAL AINO HLNOIXH-Hd

£ ¥4011d0dd

LSHYALNI 40 1NdLNO0 INFEIND 19D OL HAdVID
NI SYIONAOUd AALOVAIT AINO 21N0dXd-3d

US 9,424,050 B2

Sheet 10 of 57

Aug. 23, 2016

U.S. Patent

4\/\ |||||||||||||||||||||| .
,\/: d. 9440Ndodd \u_ VLdd01dodd

LSHYALNI 40 LN4dLNO INFHIND
13D O1 HdVID NI S440NA0dd 4LNIIXH

£ 430Naodd

C €. ¥d0naodd 2 vL¥IdNaoyd o

(HdV¥D ¥90NA0¥d 01 daVv OL ($)¥40na0ud
HOIHM) NOILNDAXH TVEOTO ONNNA HIVEO
AADNA0Yd A0 JAANIVINTY A TING/JHAOISIA
ANV ADNAANAdIA AIATOSTINN A TOSTY

¥ 440NA0dd

9 ¥d0Na0dd

S JANDI

V$ TANDIA

YAANIVIAHY THATOSTINN

~
~

£ ¥40Ndodd

9 Y3IdNAaodd
.
$ ¥4ONAoAd

¥ 442Nd0Ud
2 440ndodd

/ HAVED ¥IONAOUd
1 ¥A0NAO¥d JATOSTE/ATINGAHIA0DSIA
LSTUALNI 40 ST INdLNO ISOHM - OL LANGLLY

YI2NA0Y¥d AALIFTAS ATLNTNIND

US 9,424,050 B2

Sheet 11 of 57

Aug. 23, 2016

U.S. Patent

8 ¥323Nndodd

——

~~

8 440Na0dd

VL 4d4D01aodd

£4903Ndodd

\
~
~
~

-
~.

(HdVIDH Y9ONAONd OL Aav Ol (S)¥3dNa0dd
HOIHM) NOILNDAXA TVEOTD DNIYNA HIVED
WADINAOE 10 JIANIYWTE A TING/AIA0DSIA

ANV ADNAANAdIA AIATOSTINN FATOSTY

9495100 dd

LSHYAINI 40 LNdLNAO LNFHIND
13D OL HdVdD NI S¥930Nd0dd 41LNO0IXE

(HAVID ¥AINA0¥d 01 AaV OL (SHFINA0Ad
HOIHM) NOILNOAXA TYEOTO ONIINA HAVHD

YA2NAO0Id 40 JHANIVINAYL ATINGAFAOCDSIA
ANV AINHANAdId IATOSTINN JATOSTA

—

—

1 MIINd0Ud ISTYELINI 40 1NdLNO LNTIIND

13D OL HdVJID NI S¥I2Nd0¥d 41NIIXH

US 9,424,050 B2

Sheet 12 of 57

Aug. 23, 2016

U.S. Patent

099 ONIXOVYL

1 NO @dsvd dd1023xd 44 LSNW LVHL SYd0Nd0dd

ANV LNDIXT ANV (S)HIVID ¥AONA0Yd ITVAM

9 94NDId

0¢£9 ATNAONW

l

m €S9 NO SANHdAQ LI J0TITHL SYIDNA0Ad
mQZ<mm02<,~mz_>Z<OZ_F<_HZ<HmZHOZEDqUZH

- (SHAVID ¥IINAOY FHL A0 JTANIVINTA

dHL ATING/AJIAOCISIA ANV SHIONIANAdIA
OINVNAJ TIATOSTINN ANV JATOSHA

059 ADVEL ANV S¥IDNA0Ud
40O IdS 9HL 40 S1NdLN0 JHL AJIdON
ANV ‘AYVSSADAN SV ‘SYF0NA0Ud ALVILNV.LSNI

NOILNJOYXH HAVYD Yd0NA0Ud HAOANI

/ A

§29 SYIDNA0YUd TIOW ¥O 9NO

! <1 40 13S V 40 (S)LNdLNO ¥IDNA0Ud AAREIAO

599
1001
ANy 029 ¢IANIFAO
L 1Nd1N0 ¥32NA0Ad
spoaqoodunos || i N
NI SNOILYYVTO3d ADNEANAAA ¥aoNaoud | ¢ |}
NO Q3SV8 ‘NO SANdAA L1 J09YAHL SYTONA0¥d | | ige. SI9LLSTHFINI 40 SAONAOUd
e 40 148 Q91T TAS ATINTIIND THL SV]
ANV SAONVLSNI ANY DNILVLLNVLSNI ONIANTONI [
: — LSTIAINI 40 ST LNdLNO ASOHM SYIDINA0Nd
HOVE 404 HAVYD ¥ADNA0¥d FHL aTINg | ./ | O 0 SO A0 LS ¥ o e
ANV ¥FA0DSIA OL LAIWILLY ANV LSTIAINI 40 m
(SNI9DONAO¥d 40 LIS INTHIND FHI JLVILNV.LSNI !
0v9 LMOddNS DNINAVYDOUd | 019

JJINAM™O HAVED ¥30Nd0¥d HLIM HNIINNY 009

LNHITD HNILNNY 40 MOTI NOLLNDEXH TVIIDOT

US 9,424,050 B2

Sheet 13 of 57

Aug. 23, 2016

U.S. Patent

$7L932Nd0¥d

1=l LNHIWNDAV

02 430NA0Ad /

§1£dd0D D4d 'd4d ¥4I01d0dd
01Z (N DYV " ‘T "DIV) VHITY AOHLIN

0L (" 1" dAALNAWNOYY) INAWALVIS NOILVIV10dd AONAANAdAA YIONA0Ed

mmUD q OM d MMUDQOM d MMUDQOM.

JL FANDOIA

MMUDQOM d d MUDQOM d MMODDOM d

ZIQ_ DUV

_Amv>u2mm2mmmo "0dS
"1 (S)ADNAANAIId A 1414

0L MMUDDOMm

MEUDQOM. MMUDQOM.

m 1 (S)ADNAANAIAU qIvVMdN

01L (N "DYV " ‘I 'D¥V) VHI'TV AOHIAN

0L (01 "dAAAANIVILSNODATAVAM d"'1 'ddA@IVMIN
‘171 °dda@0das ‘W' 1°dada1did N daaodyv T 1 JAAININNDYY) INTANALVLS “2dd AONAANAdAd Y30oNd0Ud

VL ddNODId

US 9,424,050 B2

Sheet 14 of 57

Aug. 23, 2016

U.S. Patent

LL 4EDNAO0Ud
NOLLVNINYALAd
AIJNHANAdEd

4L FANOIA

07, 990NA0Yd__——>

$LL940Nd0OYd
NOILVNINYGL3d
AIDNHANAdAd

\ < 8L 430NA0Ud

\ OLTINOIA
07, 930Ndodd >

e/ 9. ¥40NA0Ud
NOLLYNIAMALAA
«ZZII_S8L¥ADNAOUd T 2 ¥9INAO¥d ADNIANIdAA
0ZL 9d0Ndodd ={I INJNNDAVY dL TINDIA
09, 440D "04d 'dAd YADNA0Ud
» S () vV1dd QOHLANW
05L () INFWALV.LS NOILVEV'I0dd AONIANIdAd Y3DNA0Ud
- ~ 01L (N'DYV " ‘1 'DYV) VHITV OHIAN
oL (41 " JAALNTANDYY) INFWALV.LS NOLLVIVTIOId ADNIANIJAd ¥3DNA0Ud

dLl F4NOI

US 9,424,050 B2

Sheet 15 of 57

Aug. 23, 2016

U.S. Patent

IL H4NO14

G > Hemnou

01> 98D s> &> (B8O
LIS > 88D 18 5

US 9,424,050 B2

Sheet 16 of 57

Aug. 23, 2016

U.S. Patent

|||

9¥8 I INAON FOVAYALNI 44N !
TVOIHdVED NOILOVIALNI NV |
ONDIAANTY V ANV b¥8 TINAON !

FOVLIALNI YASN TVOIHIVYED !
1 DNIddVIN ANV NOILVINOLINOD
| V:DNIGNTIONI ‘0v8 FINAON |
| HOVJYALNI ¥4SN TVOIHIVYD |
| 1NOAV11NdLNO ¥EDNAOUd |
v JALLOVYALNI 319VINDIINOD m

0€8 4S8N
INOTV ANV.LS

1

arzs (AIVIIALNI
MASN TYOIHAVID ANIINOTY ANY)
Jp78 SANYIWINOD 1NJAXd V01O
g+78 AA0D NOLLVYVITHd VIVA
V28 (LSTITINI HO (9¥30nA0ud
ANV SSVTD) 3d0D NOILLVILINVLSNI
ONIANTONI ‘+78 SAOHLANW
NI QESSTAIXH 40D INAITD
AANTONI LVHL SNOLLINIJAA SSVID

V8 3dNOId

€78 SOAA ADNJANAddd

JI0NA0Hd HLIM SGOHLIW

NI d4SS3ddXH D190 SSANISNY FHL
JANTONI LVHL SNOLLINIAAA SSVID

018
LId0ddNS ONIWNVIDOEd
J3INA™O HAVIH
Y40NA0Ud HLIM FJNLLNAY

078 FA0D OUNOS AILNAO-LOd(d0

US 9,424,050 B2

Sheet 17 of 57

Aug. 23, 2016

U.S. Patent

1014100 YIINA0Ed FAILIVIALNI A TdVIIDIANOD JIAINAD

€88 HOV.IUHLNI LNAI'TD LOIOAV]

A 4

v€8 4S8N
INAITO

ce8 dsn
dIAYIS

ayz8 (HOVIIALNI
FASN TYOIHIVYED ATIINOTI ANV)
D78 SANVANOD 31N03XHd TvdO1D
478 IA0D NOILVIVITId V1VAd
VT8 (LSTIALINI A0 (SIIONA0Ud
ANV SSV'ID) 400D NOILLVILNV.ISNI
ONIANTONI ‘428 SAOHLIW
NI @SSTIIXT A0 INAITD

A

HANTONI LVHL SNOLLINIAHA SSVID

€8 SOHA AONAANAdHd

Y3IONA0¥d HLIM SAOHLIW

NI A4SSHddXH 219071 SSANISNH JHL
HATONI LVHL SNOILINIAEd SSV'ID

078 440D 2dNO0S dALNATO-103ard0

48 JdNOId

<

018
LI0ddNS ONIWNVIDOYd
JHLNARNO HdVdD
YA0NdOUd HLIM FNILNMY

98 ATNAOW FDVIYHLINI 434SN TYIIHIVED
NOILOVYELNI ANV ONTIIANTY V ANV ‘v¥8 ATNAON
IVIYALNI ¥aSN TVIIHIVED DNIddVIN ANV NOLLVINOIINOD
V :ONIANTONI ‘0¥8 ITNAOW OV IITLINI ¥3SN TYIIHIVID
LNOAVT LOdLNO YIINA0¥d HJALLOVIHLNI A 1VANDIINOD

US 9,424,050 B2

Sheet 18 of 57

Aug. 23, 2016

U.S. Patent

I8 JdNDI4

3002d1Z

CARARY

ALD
SSHIaav

HIYIg404d1Lvd

7

\

S$saYAAY
«T] HIIg TYNOISSHIOUd
40 ALVa
SSTIAAYANOH
<l | TWVNLSYT
- ¥IANTD
- WA | TTT— AWVNISYT
8S8 NOILOA TAS [TTT—— AWVNISHII
I 4
AANOISIO ————— NOS¥id
758 SAOHLAN
p$8 MAIA ONIddYIN ANV NOLLYANOLINOD AL¥3dO¥d L3O
AAHL HLIM SISSYTD
0S8 WVE NI /
_
958 SONIdAVIN

US 9,424,050 B2

Sheet 19 of 57

Aug. 23, 2016

U.S. Patent

as TNOIA
4A00dIZ
AIVI1S
ALD
sSTIAAY
a0V
HLYI9d0a.LYa
SR
9 4oV ssaaa
VIVNOISSH10¥d
1 HIYId
| 0661/07/L | 40 41vd
SSTYAAYAWOH
\ HLINS / ANVN ISV
AANTD
\ L NHOI /m2<z 1LS¥Id JAVNISYT
S8 NOLLOHTAS AAVNLSYIA
HONV.LSNI MINOLSND NOS¥dd
€68 SAOHLIN
68 YAMTIA DNIdIVYIN ANV NOLLVENOLINOD AL¥AdOUd LAD
AIFHL HLIM SASSYID
\ 058 ¥VE NNTN

! 098 ALVINDTVIHY TTIM DV ANV H1LN0IXd 898 NOLLDATAS dONVLSNI
ANV L3S V NI L1NS3¥d TTIM NFHL ‘HINIE 40 A1vVA HAREIAO Al NO adsvd dd1v1NdOd

US 9,424,050 B2

Sheet 20 of 57

Aug. 23, 2016

U.S. Patent

48 4dNDId

4d0ddIZ

4LVLS
ALD

SSHIaav

4ov
HI¥IH404d.1Lvd

SSHYAd
VIVNOISSTd0dd

—

SSTIAAVINOH

— r's

T

HILYIE 40 4Lvd

HAVN LSV']

HAVN LS4

YAANTD
T HAVNISVT

T GNVNLSHLA

\

LSI'TEINOLSNO

\ NOSY¥4dd

Em%ms DNIddVIA NV NOLLVINDIINOD

\

¢58 SAOHLANW
ALYAd0O¥d 13D
UIAHL HLIM SHSSVIO

,

058 Avd NNAW

\

98 NOLLOATAS NOLLVINATIO ANV INOZ

[
998 SODNIddVIN

US 9,424,050 B2

Sheet 21 of 57

Aug. 23, 2016

U.S. Patent

48 J4NOIA

1T $861/0T/L HLIAS

NHOf

91| _—» 0661/0¢/L SWvav

HAAINNASL

9 0661/0C/L SNIT100

\ 4DV | HLYI9 40 41vd VN LSV']

HAAL

HANVN LSUId

LSI'T YHNOLSNO

Ha02d1Z

HLVIS

ALD
sSsaav

10V
H1d19403.Lvd

SSIaa
VIVNOISS340dd

SSTIAAVANOH
YHANID

HAVYNLSVT
HAVNLSYHIA

NOSHdd

P8 YIMHIA ONIddVIA ANV NOILVANOIANOD

258 SUOHLIN
ALd4dOdd L3O

JIFHL HLIM SFSSVTID

|

068 dvd NNAN

|

_

ANV 13S V NI L1NS3d TTIM NAHL ‘HLY19 40 31vA dArdydA0 4l

0,8 ALVINDTVIAY TIM dDV ANV d1LNDAXH

898 NOSYId SSVID

40 SHONVISNI NO dSvd 41V 11dOd

US 9,424,050 B2

Sheet 22 of 57

Aug. 23, 2016

U.S. Patent

6 H4NDI14

26 H4NOId

$¥6 LY0ddNS ONIWANYEOOUd

JHINARO HdVYD ¥I0NA0dd H1IM

SV TTdM SV ‘NOILOFdSOYLNI AOHLAW/SSVTD
ANV ‘NOLLVDOANI AOHLAW ATONIS OINVNAQ
‘NOILVILNV.LSNI SSV'10 DINVNAQ ‘ONIAVOT
SSVIO HLIM JALLNNY WALSAS ONILVYAdO

0¥6 SQOHLIN
04 SNOILVIVIOHA ADNIANTdId 4923Nd0dd
HLIM 3d0D 324N0S d4LNARNO L2440

Vo6 2dNOI4

S€6 WALSAS DNILVIAdO

076 WHLSAS DNILVYEdO

0£6 LY0ddNS ONIWNVIDOUd d4LNIRIO HAVID
9I0NA0Yd HLIM SV TTIM SV ° NOLLOAdSOYLNI
AOHLAW/SSVTO ANV ‘NOLLVOOANI QOHLIW
ATONIS JINVNAQ ‘NOLLVILNVILSNI SSV'ID
JOINVNAC ‘DNIAVOT SSY13 HLIM FNLLNNY

$16 NOLLOHdSOYLNI

AOHIFW/SSVTO ANV ‘NOLLVOOANI AOHLINW
HTONIS DINVNAJ ‘NOLLVILNV.LSNI SSV1D
DINVYNAQ ‘ONIAVOT SSVTO HLIM FNLLNNY

- 676 SAOHLANW
A0A SNOILVIVTOAA ADNIANIJIA YIONA0Ud
HLIM HAO0D 42dN0S A4LNAO LOAfd0

016 LYOddNS ONIWANVEDOUd
J4LNIRIO HdVYD ¥92Nd0dd HLIM FNLLNOY

$06 SCOHLINW
JOd SNOILVYVTOFd ADNAANTdHd 490Na0dd
HLIM HJOD d23dN0S d4LNITIO LOdrdo

US 9,424,050 B2

Sheet 23 of 57

Aug. 23, 2016

U.S. Patent

1801 | ! $801 TNAOW 11D LNOAY'1 , _omnow
YIOHLVISIAARO | | 1Nd1NO YFONAOYd TAILDVEAINI DIINOD | m
_llllllllllllllllllllllllIIIIIIIIIIIIIIIIIIII|IIIII||IIIIII|I|I|IIIII|IIIIIII|III !
4 d:: Rinionais L m
v v v 9L01 TINAON | | I \o1s10ad 0 6 9£01 SANVIAINOD !
1201 aw | [8201 1w [ez01 TV00T TATIVEV | | [} qreves NOLLOATAS 440N NOLLADAXE m
B - 5.0l FINGOW ADNIANEAAA DINVNAG | 177 "]
.. $€01 SANVININOD F1N04Xd TVEO1D m
L01 IINAOW NOILNDAXA HIVYID YAINAOUd o LWOID0T "
- ! JAREAAO | “
....... LS !
£601 ONIHOVD) - ommmmmmecenes (oo S| svo1 annaop |
114100 gsol i 080UDMW /17T 0 || 0601 SONVININOD AATMIAONI/AARNEAO || |
‘aoyd ‘SONILAN "m DIXH "ONI m m AIONA0W mé LNdLNO ¥IdNA0dd
............. e [aanniAo ! DNIANTONI NOLLVEVdTdd VLVA
0901 FANLINALS (S)HIVYUD YFONAOUd || beoooomeposforooe |
)
0v01 .\n\.\ | $Z01 SATY ¥dDNA0YUd
NLINAQON 'ND HAVED ¥E0NA0¥d '01AY LT HIA SOND NOLLYLLNYLSNT ¥A0NA0Nd
3 8601
T 501 (VLVQ) ¢ FINGOW 0201 SAT IONVLSNI HLIM
il .| SHONVISNI {[7 HONVISNI SANVININOD NOILVILNV.LSNI SONV.LSNI
L MAN
$901 TANLONULS !
ONIOVIL / B :

AONVISNI 9501 $0dd AONGANAAA) |,----o-----f-- || 9101 SOIA AONAANIAA ¥IONAOYUd

A | P . ¥IDNA0Ud ANV | $101 SONILLAS HAOW NOLLODIXH

.............................. LI 801 % «goNgLLas HaOW | oo, P101 SUOHLAW

" 700l A1ndon yamais IS LW 5axa ‘saoHIan #0601 SATISSVID | z101 VIva

| % 1 10101 21907 SSANISNA
) A J '| dHL3ANTONI LYHL SNOLLINIAAA SSVI0
8701 TANLONYLS ONILLIS INLLNMTY 4001 LIOddNS

....... ONHABRVAIDONT CATNETIO HIVED ¥IINA0d HLIM GWIINNY 000 2001 INAI'TO AWLLNOY

US 9,424,050 B2

Sheet 24 of 57

Aug. 23, 2016

U.S. Patent

ari NANOIA
8611 L6T1 6611 611
SNOLLY.LONNY SSYTD | QANIVILSNOD €611 | S6I1 9611 | ¥611 | TONTIIITY 0611 AT
TYNOLLIAQV | 1NdLNO ATIVAM | qavmdn | "OFs | a1did | ouv QOHLANW QOHLAW
YOLVIIANI
ADILS
vV ANV
AAOW NIV IIONTIT T
“DINTITITA AIDNAOUL
¥I0NA0Ud NOI
NOI | LYNINYALAd
LYNIANYALAa | AONIANdd3d
AONAANAdIA vV aNv
0LIT SN ve(| HONTYIITH
OILVOIGNI | S)ZON=dd4Td Y40Nd0dd
LNdINo ¥I0Nd0dd INTdVd
AIONA0Ud QTHD MNI'T YV ANIT
€L11 | JATYIAO HOVA 404 HOVA 04
DONILLAS » ONIANTONI ONIANTONI
0811 ONIDIVIN SLIN qa0W | ONIHOVD | ‘0911 (S)NNIT | O0ST1(SNINIT SEll
NOILNDAXd | SORILAN | NOLLNOAXA LNdINO | (9YIONA0Ud | ()I4FONA0AL | SPIT 43 | OvIl dTd | 49
TYINTWTAONT | ¥30Na0o¥d | ¥90Naodd | ¥90naodd atHd LNFYVd | QOHLAW | FONVISNI | SSVID
ST ANNDI
g11 TINOIL V11 TdNOILL
$Z11 FIONAYHATA 0zl 0111
ADINV.LSNI AT GONV.LSNI SIIT AONFITITA SSVID | ATA SSVID

US 9,424,050 B2

Sheet 25 of 57

Aug. 23, 2016

U.S. Patent

TANLIOULS NOISIOHA NOLLVINDIANOD ddSva-dd0nNdodd

~__ DI TANOL
NOLLYIONNY WO d0
“IVOOT ‘ONIAVAMH.LLL TN
‘ONISSAIOUIL TN
8811 9811 p8I1
ONILLAS 00N NOLLNDAXH AT GONV.LSNI AT QOHLAN 7811 AT SSVID
d11 TANOL
. €211 4A0N 1211 9AON
NOILLNDAXA NOLLNDAXH
HANL
DMYLS ONLLLAS HNLLNNY TN TVNIODIO
gOf HOVE OL DLIDAdS MO TVEOTO A4 NVD dVIN WO AHZITYIAS q11 TUAOL
SRS
. S
i
U F
M PILI
| AT ADNV.LSNI €Lt
SITTAWLL | LILI ZIS WJOd O111 MO | ANV AT SSV'ID | AT ¥ADNAOUd Ziar
zo?ﬁgﬂmmm.__ AgZITvIdas agzZIIvIdas ONIATIIANN LNdNI | W04 A9ZITVIdds

dVIN TVDOT WHOd d3ZI'TVIYdS \

US 9,424,050 B2

Sheet 26 of 57

Aug. 23, 2016

U.S. Patent

0LT1 ATNAOW ONILNINOD LNV LSIA

0621 ArdO

00¢I

VZ1 2ANDId
N 1801
YIHOLVASIA dgn
3
Yy v v 9201 ATNAON
LLOT dN 8L0T LN || 6L0T TVDO1 THTIVIVd

0,01 4'TNAOW NOILNDIXH HdVHED ¥IDNA0dd

$001 LYOdd1S ONINNVIDOUd
JHLNAO HdVID JIONA0Ud HLIM FNLLNNY

US 9,424,050 B2

Sheet 27 of 57

Aug. 23, 2016

U.S. Patent

HdVdD ¥321a0dd AILVINOLNY

T ozl T 3 471 TANOI
| ATNAOW NOLLOSENS !roocooooieeos _ m
| ST EInGow T 09T TINAOW :
| AONAANEJAA OINYNAG | AINIONLINOD
0201 A1NAOW NOILNOEXT HAVYD ¥donaodd .
) + 0szi |
1 0901 FANLONYLS (SIHAVED ¥AINAOU Q | DOT'ENS |
- _— ___— ————— L S .
| 0 AINGON 1 0/IFINAOW |
™ ov01aInCONNOILVNENgD | AONAONIINOD i NOLLRISENS |

A

[T 0001

zs01 ;so0L

— | dINCON | |
Vv e | JONVISNI | |

SHONVISNI | 1 ™ (o 4

$901 TANLONULS x N
DNDIOVYL ¥ m
HONY.LSNI prmmmooeeeeee o
9501 SOIA AONAANAdAd || | S60T i |

YIONAOUd ; AINAON |t

ANV SQOHLIW p SSVIO 1

b MAAN

pSOT SASSV'ID R b

y001 |

1¥0ddNS ONTAIWYO0Ud AZ.INARNO HAVID ¥INA0¥d HLIM TNLINMY

- SIZ1 S¥H0NA0dd
_" mA&,:DE

i 0TTZ1 NOILdTIOSdNS

||||||||||||||||||||||||||

9101 SOHU ADNIANALIA II0NA0Ed
S10T DNILLIS FAOW NOILLNOAXA
¥10T SAOHLIW
10l YLVd

0101 DIDOT SSANISNI HHI

HANTONI LYHL SNOILINIHEA SSVID

US 9,424,050 B2

Sheet 28 of 57

Aug. 23, 2016

U.S. Patent

el ANDIA

08¢I1
8¢l SYADNaodd d99NA0Ud NOILVNINIALHA

MIVANYLS AJDNAANAdHA VET TANOIA

€1 YAONA0Ud AL
e ¥EONAO¥d

d3d NIN1Td

€1 ¥90NA0¥d=a0dd ddd

LOTAIA=adAL ddd

0Z€1 40D “DAd "d4d YAdNA0Ud
S1¢1 (d9d 40 IDNVLSNI NV ST 1NdLNO) VLI AOHLAN
01€1 () "LVLS "0dd 'ddd ¥30Na0dd

©

VHd'TV:-0[-:0D
Y4oNaodd

$0¢1 YHdTV AOHLIN
00€1 (" *VI1AE: ATl MO YADNAONd: ") "LY.LS "0dd 'dad ¥I0NA0Ud

®

US 9,424,050 B2

Sheet 29 of 57

Aug. 23, 2016

U.S. Patent

f ¥30Na0yd LA AL

08¢€1 Je1 £ANDIA

YIONAO¥Yd NOLLYNINYALAA
AJNHANAdHd

X NINLAA
0FE1 VINWVO QOHLANW
2¢€T () "LV1S "0dd 'd4d ¥3dNaoud

acr PNOIA

d3d NANITY ‘LOTdI0=ad AL d3d

YINNVD:EZIEXO=A0¥d d4d

9¢€1 400D DA "dAd YADINA0Ud
v£€1(ddd LNdLNO) VIT19d AOHLANW
7e€1 () "LVIS "DEd 'dAa ¥gdNd0dd

do¥d'dad NIN.LTY (1D dId=ad AL d3d
€, JIONA0Yd=q0¥d d3d ISIMITHLO
VL 492NA0¥d=00dd d4d NIHL 1= OVWAVD:ZI:X0 Al
0€€1 4d0D 'D49d "ddd YIONAO0Ud

S1€1 (d9d 40 ONV.LSNI NV SI.LNdLNO) V1d9 AOHIAW

§7€1 (VITAA-AFND YAINA0™d) "LV.LS -04d 'ddd ¥AINA0Yd

10,

VIAWVDZ1XD
d4210a0dd

VITAA=AL:ND

§8¢1 SY40NA0Ad ¥49Na0dd

JUIVANVYLS

\\\\\ Yd2Ndodd

-
-

15

06¢1 v.Ldd AOHLIN
- HHANIVINEA
JIATOSTINN

-~
~~a
~

S0t1 VHd'1Y QOHLIW
00€1 (" *VIAE: AL MD YIONAOYd: ") "LVLS "Ddd "d3d ¥IONAOUd

@

$8¢1 S¥30NA0Ud
MIVANVLS

US 9,424,050 B2

Sheet 30 of 57

Aug. 23, 2016

U.S. Patent

\\.,oﬁ ! @
Cacmaons > |

08¢€1 d€1 ANOIA X NINLTA
YADINUAOYd NOILYNINYALAA OrEl VINAVD AOHLIN
ADNAANTdad geel () "LVLS "0dd "dad ¥donaodd

AE1 DINDIA

N d4d NINLAY " LOAYIA=ad AL d9d
A 'YWVDHZI:XO=00¥d 40
$8¢1 SYIONAOUd 96£1 3000 “03A ‘4dd YIINAOU

MIVANVLS a e e R ppe1 (d9d 1NdLNO) A1d AOHLIN

VYIWAVD:-ZT-XD
YIO5NA0Ad

S N zeel () "LVIS "04d "ddd ¥90Nd0dd

" mmu:mom d d3a NaNL3d .H.ummaumﬁ_ﬁ d3da
\\\\\\\\ 44 ¥490NA0¥d=a0¥d d9d ISIMITHLO
(e ° VL 490NA0¥d=A0dd dAd NAHL 1= OVININVD:Z1: X0 Al

06¢1 V138 AOHLIW e 0£€1 340D 03d d9a ¥IONAOUd
- MAANIVINTY S1¢1(d9a 40 FONVISNINY SI LNd1NO) V18 AOHLIW
AIATOSTINA Trel (VWIAYD:ZIXO ¥A0NA0¥d LNOLYOHS) "LV.LS “09d 'dad "a0¥d

€ ¥adNaAcUd
S3E1 SAAONA0UL $0t1 VHd'TV AQOHLIN

QIVANVLS 00€1 (*VIaE: Al MO ¥IONAOYd: ") "LV.LS *03a 'ddd ¥I0NA0¥d

@

US 9,424,050 B2

Sheet 31 of 57

Aug. 23, 2016

U.S. Patent

OE1 TANDII
08¢1 10 NANLTY

HET TNOIA YIDNAO¥d NOLLVNIWIHLIA
ADNIANIddd

0LET 102130 AOHIANW
¢9¢1 () "LVLS "0dd 'ddd ¥3dNdaodd

121350100
d42Ndaodd

TATL01:0D - — -
AIONA0H %ﬁ NAN1TY .Sh._w..ow.oouooﬁ daa
"LOFYIA=Ad AL dAA 1D1AD TIOANI
$9€1 FA0D DA "dAd ¥90NA0Ud
79¢1 (43a LNdLNO) ZATI AOHLAW

ze€1 () "LVLS '0dd "d9d ¥I0Nndaodd
TANLLNNY dHL A9 omimmva @ :

¢8€1 SYI0NA0Ud
AIVANVLS

TTT=AD
d30Nd0oAd

TATL0I-:00
YIO0NaA0dd

pors
-
e
e
P
-

dd4d NINLdd

TN 10=00¥4d d4d

LOTIIA=2dAL ddd ‘1OLID TAOANI

09¢1 40D "2dd 'ddd Y323Naodd
$S€1 (dAa 40 ADNVISNI NV SI LNdLNO) 1ATd AOHLAN
0S€1 (1DLAD01::0D ¥IINA0Ad LNDLIOHS) "LVLS "D9d 'ddd 490Na0ud

kQ

-
-—

06¢1 [A1d AOHLHINW
- YHANIVYINTAE
JIATOSHENN

$8E1 SYIDNAOUd J40Naodd

MAVANVLS

0¢1 VHd'TV AQOHLAN
CUIWHTTFTOLAD<E> ¥30Nd0¥d LNJLYOHS) "LV1S "03d 'ddd ¥d0Nd0dd

©

srer

US 9,424,050 B2

Sheet 32 of 57

Aug. 23, 2016

U.S. Patent

61 UL IE1 TINOII
08€1
$8¢1 SYHONAOUd ygyngoyud NOLLYNINYALAA
@AVANVLS AONAANAdAd

01 J40Naodd

ATd0I:0D

HWLLNMY FHL A6 AI1LVEID //
YI0NAdoUd

d3d NIN1TY ' 1OMIIA=Ad AL dad
01 YIDONA0Yd=A0¥d d3d
8LE1 HAOD “0IA "d3A YIADNAOYd
9.€1 (d9d 40 ADNVISNI NV SI LNd1NO) ATd AOHIAN
pLET () "LV.LS "Ddd 'dad ¥IDNA0Ud

[O

VHATV:-0I::0D

J40Naodd SO€T VHd'TV AOHLINW

zLel (77501 ¥IDNAO0Yd LNDLAOHS) "LVLS "Ddd 'ddd YIINA0¥d

@

£8¢1 SYIDNAO0Ud
MAVANVLS

US 9,424,050 B2

Sheet 33 of 57

Aug. 23, 2016

U.S. Patent

0L¥1 d4201Aa0ud
NOLLAIOSENS
AMDILS

Al INFANNOYV

0841
ADNAANIdAA NOLLITYDSHNS

SLy1 ¥HONAOAd
@ YI0NA0YUd ¥ADOMNL

OF1 AYNDIA
AMDILS HLIM ¥92N00¥d
SSYI ¥40NA0Ud
NOILdrIOSENS
NO09¥1 ¥40NA0Ud V09v1 330Nd0¥d ONIHIOSHY
S ®
SYAONA0Yd YIDDNIL R~
al ININNDIV
0S¥ AONAANAJId
NOLLAIIDSEANS
av1 ANOI
ONIFIOSEY ol
HLIM ¥A0NA0Ud
0 Vi1 ANOIA
0Lyl
0Lb! oLvt| WO¥d
WOud WOY4| 08+1 40
08%1 40| 08¢1 40| JAOW
0Lyl 08v1|QOHIAW| SSVID| INIT VN VN| 0L¥1 WOUd AMDILS 0Lyl
0sv1 40
dAdOW
994! V/N VIN VN NI ON YO SdA N'VO9FT| S§SPT INOUA | DNITIOSHY 0sv1
(11841
Izvl $YAONA0Ud
AONTYFITY STvl SIpl| ¥ADDNIL
YADNAOUd Levl SEvl 0yl | ddOW 0zr1 | (DNIFIO0SEY) A0d 00¥1 A9
‘130 | 9ONVISNI | GOHLAW| SSVI0| MNIT|(ONIEYOSEV)| S¥HONAO¥d| VIMALLND sopl| ¥9ONAOMA
AONEANAdAA| INTHVd| LNTUV| INTIVd [INTYVd| Q13TdNOD| ONIHOLYIW ‘gns| ddAL ENS | S HALYDSANS

US 9,424,050 B2

Sheet 34 of 57

Aug. 23, 2016

U.S. Patent

< y6v1ddd

98%1 4d0NA0dd >

961 ADNIANAdAd

JIONAO0Yd NOILVNIWYALAA AONAANAddd

A=l DYV

/

< 86v1 ¥4INA0Yd

0.1 ¥EDONAO0Ad
NOILJdI¥DSANS
AJDILS

SLY1 4AONA0Nd >
................................. ¥A2NA0Yd YFDONIL

08%1
NOILJIIDSENS AXMDILS HONOYHL d4LVIdD
YIONAOYd NOILYNINIALAA AONAANAJAT ===

arl A01O14

A=0l "DV

v
< _28v1 440NA0dd

ARIVIOEA ATAYVMAN HONOYHL QALYAdD) _ceeme==) dv1 2aNOH

US 9,424,050 B2

Sheet 35 of 57

Aug. 23, 2016

U.S. Patent

0881 ~

0LST
dANOd

S HUNDIA

0951 AHY HONVLSNI HLIM HYOLS ANV SSVTO 40 HONVLSNI HLVILNVISNI

0SST AT SSYTD HLIM NOILDHJSOYLNI TYOLS ANV ‘SINIWHLVLS NOILVIVTIOAd
ADNAANAJAd JFINA0Yd ANV ONIANTONI ‘NOLLINIAAQ SSV1D LOTdSOYLNI

0rSI SSVID AvOl

0€S1 ¢A4AVOTAAVAYTY

HONVLSNI 40 NOILLINIAAd SSV'IO

SHA

0TST ¢ISIXH AAVAATY IIONVLSNI

S3A

01ST ANVININOO HONV.LSNI MIN OL JAISNOdSHY

US 9,424,050 B2

Sheet 36 of 57

Aug. 23, 2016

U.S. Patent

§691 DOT LYV.LS NOLLNDAXT FHL OL ¥9D0Nd0¥d dHL Aav
‘a9.1n0aX4d N394 dAVH ANV LSIXd SYIINA0Yd INIANIdAA T1V A1

0991 4421100 Yd 4O SNLVLS
NOILNOAXT NMNITT |

A

0591 HOVH 404 ANVININOD da2NdO¥d MIN V HOANI
ANV S¥I0NA0Ud 0 JFINNN IANINIALAA ‘MON QINIWYALAA 49 OL
SILVHL NOLLVIVTOHd ADNIANAdId JHL NI ADNIANAdIA HOVA J04

4

$991 DOTLAVLS
NOILNDAXH FHL NI D071

SP91 INFAAIYYHAO LON

A

ANV SHIDNIANAdId ANV

ON

SV d42Na0dd AV

0v91 ILNDIXINN SV YI2NA0Ud MAVIN

0891 A4.LNIIXIANN

7y

$€91 ADNIANAdAA OL ANA AITTVO AT HIVID JADNA0¥d OLNI JANI'T

A

0€91 VIIHLID DNIIALTIL
NOLLAIIOSENS SSTD0¥d ‘NOILINIISANS ATIALSIOT HOVE 404

A

€791 (SIHIVYD YIINAOYd OL AaV

4

€791 HAON WO_HDUme YIINAO0Ad ANINGZLIA

40 “dNS AMILLS

ON

SL91
GaIAVIOHd
ATTIVAMdIN

A

0291 NOLLINIAAd SSYTO dHL NI 943Nd0dd 40 INTFIWHLY.LS
NOLLVYYT10dd ADNAANZIHIA 9901a0dd ANV AOHLIW SSTIDV

A

S191 J40NAO0™d 40 HONV.LSNI 4O NOILINIAAA SSVTO SSHOOV

A

0191 AINAOW HONV.LSNI MIN TTVD

ON Y
§091 &LSIXd AQVEITY ¥30NA0Ud

$691 NIAARIIIAO LON NIUAREEAG,
SY ¥40Nd0dd YAV
A

0691 ANVIINOD
AATIYIAONN

¥A2NA0Ed 0L91

OL dAISNOISTY AONAANEdIa

0L 4nd 9 TIVD

41 (S)HAVYD

¥IDINA0Ud

OLNI JNI'T

A

SHA

0091 ANVIANOD ¥942Nd0¥d MIAN OL HAISNOSTd

NVIDVIAd MO HIINa0dd MIN

VoI £dNO1d

US 9,424,050 B2

Sheet 37 of 57

Aug. 23, 2016

U.S. Patent

ﬁ ST91 Ol y

)

A

B 6£791 INOA ALI

LETO1 TAUNLONYLS NOISIDHA
ATEVINDIINOD AdSVE-4d0Ndodd
OL ODNIQYOIDV 40N NOILNDIXH 138

[

PLC91 ONLLLAS NOLLNDAXH HALLNNY
O.L ONIQY0IIV HAOW NOLLNIIXA 148

SHA

8€791 NOLLVILONNY HHL OL

DNITIODOV FAOW NOILNDIXH LIS ANV TIAIT HAOD
LV NOLLVIONNV NV SV JaINIJ9d FAOW NOILLNDIXHd
404 ¥42011d0dd dHL 4O NOILINIAFA AOHLINW A3dHD

9¢791
6NOLLIITAS HAOW NOLLNDAXH
ANV HAVIW 445N INA SV

SET91 YHSN ANA
WOYA NOILOFTIS HJOW NOILNDAXH Y04 TdNLONALS
NOISIOFA HTdVANDIINOD AASYH-4d2Nd0dd AOTHD

ON

£ET91
CATTHVNH AATNIHAO
DONILLLAS NOILNDHXH FINILNMNA SI

1€291
JATIIIAO DNILLAS NOILLNDIXH FNTLNOY JDHHD

91 NANOIA

0791 WOYd

US 9,424,050 B2

Sheet 38 of 57

Aug. 23, 2016

U.S. Patent

ﬁ $591 0L w L1 TINOII
A
0ZL1 ¥IDNA0Yd NOLLYNIA¥ALAA
404 CYIINOD %mwwmwwm ADNIANTJAd FHL YOI ANVIAINOD
AINA0Yd MAN ¥ THOANI
MAN V TIOANI ANV SYIINA0¥d 0
40 YATWNN ANINYALAA
SaA
0¢Ll §741 ¥90Nd0¥d "
{AONIANAId NOILYNIANALAA .
NOILLADIOSENS ADNAANEIAA [$R ﬁmwwmmw%%
-NON 9100daxd

ON

OvLl

HLATdNODNI SV AVIN
‘ONIFIOSEY 41 ‘aNY D01
NOILLdIFDSdNS OL Aav

SvLl
SHHOLVIN ANV $S300dd
ANV ¥44DNd0dd TIV NVDIS

0IL1 ANOA

SOLE ¢{ADLL
HLIM dHE2NIT
AQvaa1v
ADNHANAddd
LININNOYY

SdA

001 (ADONAANTJdAd ¥I0NA0Ud 1 YAIL) NOLLVIVT1Oad
ADNHANAIA J92NA0Yd NI ADNHANTdHA HOVE dOA

Y

0591 —

P91 WOUA _

US 9,424,050 B2

Sheet 39 of 57

Aug. 23, 2016

U.S. Patent

81 4dNDI

ST81 ¥4DNAO0Ud

DNIHOLVIN dHL OL ADNAANAddd
NOILLATIDSANS ONIFIOSdV FHL
HLIM ¥40Nd0dd HHL ANI'T ANV
J401dOdd ONIHOLVIN V SV Aav

ﬁ 0£81 ANOA g

+

ONIFHOSEY 0781 ANVININOD
4HONA0¥d
MAN TXOANI
SI81 ¢AdAL AJDILS
NOILAOSENS o181 ON
(VINALIND
SAA ONIYALTIA
NOILdROSENS
REEI!
0081 ¥IONAO¥d HOVE Y04
7Y
syl h OvL1 WOYA Q

US 9,424,050 B2

Sheet 40 of 57

Aug. 23, 2016

U.S. Patent

VIZTHINDIA

AV ANV (QTd1d V 41 IONVLSNI NI ANY) HOVO LNdLNO ¥F0Nd0dd NI LNdLAO L3S

0€17 NAAAIIIIAO SY 49D5Nd0dd

A

0TIT ANVINNOD ¥92Nd0dd MUN TAOANI

A

0117 ANVINIWOD 3AIYIIAO ¥30NA0Ud OL HAISNOSTA

0v91 40
SL91 0L

ﬁ $€9T OL q 61 TANOIA
07 ANDOIA 4
$261 ¥ADONA0Ud E
DNIHOLVIN GHL OL ¥92Nd0¥d
0202 DNIFYOSEY MNITANY ‘ALTTINOONI
¥FONA0U ATIHD AATTVD) +10C SV NOLLATIOSENS ONIFHOSEY YAV
dHL OL ¥IONAOUd d9onaoud “4EONAO¥d DNIHOLYI V SY Qv
INTUVI INTIND INIT d'1THD —
pamnoa ||| ™o s
NV ¥IONA0Ud
0107 (aTV 1030 STV INT MAN TIOANI
ATTIVMAN .
O ADNAANHAAT 5161 ¢ddALN
NOLLJRIOSENS OLLdI¥DSENS 0161
AMDILS SVIMALRID
QLINaad11v ON SHA ONIJALTIE
5002 NOILLJJSENS ON
¢ADNAANEJAAd LTI
SAA
0061 NOLLIDOSENS ATALSIDTA HOVA 404
! A
$£91 ANV 091 ﬁ 0£91 MO S091 WOUA w 0691 ﬁ $Z91 WO g

US 9,424,050 B2

Sheet 41 of 57

Aug. 23, 2016

U.S. Patent

aiz RANO1

D17 34NOId

g1¢ 1aNodI1d

SL1THAOYV dHL 4O ANV 4O NOILVNIFINOD V
YO ‘SISVE IDNV.LSNI NV ‘SISVE AOHLAN V ‘SISVE SSVTD V NO TANLONYLS NOISIOAd
JI4VANDIANOD d4SVH-440Nd0dd NI ONILLAS FAONW NOLLNDEXH JATHIHAO

0L1C ANVININOD FAMEEAO
JANLIMELS NOISIOHA HAJOW NOILNJEXH HTdVANDIINOD OL JAISNOISHY

§91T
HANLINALS ONILLAS FNLINOY NI ATIVHOTO ONILLES HAOW NOILNDAXT HATIITAO

q

0917 ANVININOD dd-IIAO HDNILLIS HAON NOILNIDFXH FNILNNY OL FAISNOdSTI

SS1T
FANLINELS HIVED dI0NA0¥d NI ONILLIS HAOW NOILADIXH ¥I2NA0Ud HATIITAO

H

0S1C ANVININOD JJOW NOILLNDAXH dATIITAO NV OL JAISNOISTA

US 9,424,050 B2

Sheet 42 of 57

Aug. 23, 2016

U.S. Patent

>V e
»(V)<
V2T TINDIA
0222 A1ATdNOONI
NOILNDAXd GHL OL AFaay ATMAN AaLNIAXA
SIFINAOA NO qASVd SYIINAOUd NO AJNAANTAA
4LVAIdNYD JO 188 9HL 0L aay NOLLATEISENS
A DNIFHOSEY
44 NV 3AVH
SNOLLAIMDSENS SSH20¥d ANV DOT LVHL SINTHVd
ANV S¥FONJ0¥d ATIFAODSIA YO ANV NIV
SANVIWINOD ¥FDNAO™d MAN IXOANI 7y
cisa
A ;
daa o%uamom ¥IONAOUd TIVANYLS
60C
SINTWLVEIL
-1S0d dIiS
@ 8077 ANANO ASV.L L1NSAY T¥D0THNANO MSVL LINSTA LA
‘ANEANO ASVL LINSTA dW 40 INO WOUI ¥SVL V JAOWTY ANV avad

A

LOTT AATHVNH A1 NOLLVZITATIVIVd HLIM S940Nd0dd HLNOIXH
A

e. $077 d41NOdXd 449 OL AAVEY 94V LVHL SYI0NA0¥d HLYAIANYD JO LIS LNFHIND
AHL WOYA SYFINA0Ud 40 LASHNS V ‘SYAINA0Ud AQVTY 40 1AS INTHIND V SV "1OF TS

A

0027 SYE0NAO0dd HLVAIANYD 40 LIS INTIIND FHL SV DOT LYVLS NOILNJIXd HHL
NO S¥9DNd0¥d dHL NO a4Svd d4.100dXH 949 OL SY90NA0dd ALVAIANYD 4O L4S LOITIS

US 9,424,050 B2

Sheet 43 of 57

Aug. 23, 2016

U.S. Patent

0927 SY4I0NAO0Ud NOILLIIIOSHNS ONIFHOSHV LA TdINOINI SSA00dd

$8TT (AL TdNOD SNOLLAIEOSHNS T1V

$9TC ANOd

GALANE SHEDNAO0Yd ALVAIANYD 40 LIS —

477 44NO14

8¥2T (ALING
ANAN0 ASVL L1NSTd TVOOT
% ‘dNAN0O ASVL L'INSTY dN

ANdnd MSVL L1NSTY LI 40 Ty

SPTC SYH4ONAOUd AAVIY ANV

41VAIANYD 40 S19S INFIIND FHL WOYA S¥I0NA0¥d AALNITXT HFAOWTY ANV ‘AdLNOIXANN
SV AV ANY d4.LNDOFXH 349 OL S¥4I2Nd0dd ALVAIANYD J0 L3S FHL OL SYF0Nd0Ud

INTIVI ANV AV ‘GIIINOIVY AT SOTILAN ¥aINA0Ud ALYAdN “‘AAVSSAIAN SV ONIHOVD
AONVLSNI ANV ONIHIOVD LNdINO ¥92NA0¥d ALVAdN ‘Ad.LNDIXA SY SYAINA0dd AVIN

o

US 9,424,050 B2

Sheet 44 of 57

Aug. 23, 2016

U.S. Patent

01¢Z 0L

£CHINOIA

STETANOA

02€T SYIdNA0Yd AQVTY 40 138
INTYEND HHL OL ¥93NAd0¥d LVAIANYD AILDdTdS ATINTNIND HHL AdV

SIET (AHLNDAXH NO

ON LNHANAIJIA S¥90NA0Ud

01€Z ¢HLATdNOD LON
J4V LVHL AODNAANdddd

NOLLARIOSENS
SHA ONIFIOSEY
ANV HLIM ¥300d0¥d

$0£T SYIONAOAd ALVAIANYD 40 L4S dHL NI ¥30Nd0d¥d HOVH 404

+

s0cz — 0077 WO¥A

US 9,424,050 B2

Sheet 45 of 57

Aug. 23, 2016

U.S. Patent

¥¢ TdNOII S0TC OL

ﬁ $757 ANOA g

A

02ST SYd0Naoyd
dLVAIANVD 40 L3S 0L dav

A

SISTHLAIINOD
SV NOLLdIIDSENS ONIFHOSHV AV

0162 ¢d4LNDdX
NAI4
SY4ONAodd
DNIHOLVIN T1V

$0ST

JLATdWODNI ST LVHL AONAANdddd
NOILdIDSHNS ONIFIOSHV

NV HLIM ¥35Nd0¥d HOVA 404

A

09¢¢)

SSTTINOYA _

US 9,424,050 B2

Sheet 46 of 57

Aug. 23, 2016

U.S. Patent

6£97 ONIHOLVW ¥4LVT

W04 ANANO ASVL NOILNDAXH dW

NI A40LS MSYL NI AONTIIATd

N3N0 MSY.L NOILNDAXA TvI0THIOLS

»

8£97 ANANO MSV.L NOILNDAXH TVIOT
NI MSV.L MAN GHL HSNd ANV ¥40Nd0¥d
dHL 40 LNdLNO HHL ANV ¥40Na0yd
FHL ONIONTYIITY ASVL MAN V ALVIID

!

LE9T INFWLVHAL 15S0d
dIXS OLMSV.L dW HHL VA

$€97
ANAN0 ASV.L NOLLNDIXA dIN
NI MSV.I AHL HSNd

STHANDIA

09
SAAVAATY AANNVIS
NAdd $992N1a0dd

A 4

AQVAY 40 138
JHL NI S¥4201d0dd
TIV HAVH

7€97 ANAN0 JSVL NOLLNDAXA TvIO1

NI ¥SV1 9HL HSNd

0€97 (AAON
NOLLADIXH

Y

§297 ¥401d0dd HHL 40 LNd.LNO FHL
ANV ¥30NA0dd JHL ONIDNIEF49d ASVL V HLVEYD

ON

_ _ €9z
ANANO JSVL NOILNDIXT IW
NIMSVL 2HL HSNd

+

T79T TENLONYLS ¥d2Ndodd

NI ¥IONA0Y¥d V A0 HAON NOLLNDIXH AVId

0197 NOILVILNV.LSNI

Alﬁ 079 SYIDNAO¥d AQVHY 40 1dS NVDS |4
A

Lotz —~

S0ZT NOdd

US 9,424,050 B2

Sheet 47 of 57

Aug. 23, 2016

U.S. Patent

0697 ANOd

4nand MSVL
NOILLNDAXA 1IN
TVILINI OL TvNOd
471§ 404n0
MSYL L1NST 1N

97 4dNOI4

0997 NOILNDIXd TVIOT

ANV DNISSHOOUIILINN |«
WH044d3d

059 ONIAYHIH.LLLTNN
WHOJLdHd

O1l AVAYHL 41LVIVdHS
V HLVILNVISNI

h

Fr9T INSINVHOIIN ONI'TOOd AVAYHL LVILINI

_ TYTLALINE
ANAN0O JASVL NOLLNDIXT 1L SI

SHA

US 9,424,050 B2

Sheet 48 of 57

Aug. 23, 2016

U.S. Patent

VLT 4dNDIA

0SLZ0OL

ON

SvLTANANO NSV
NOILNOFXH "dW VA1)

2 o
£pL7ANANO JASV.L NOILNOAXA dN ALVILNVLSNI
ON

0PLT (QILVILNVLSNI
AN0 ASV.L NOILNDAXA dA ¢

£€L7ANANO ASVL LINSTY dN ALVILNVISNI

$€£7dNdNO ASVL LINSTA dA
VAT

$7L7dANAN0 ASVL
NOILNOFXd LN VAT

andand ASV.L NOLLNDIXd 1A

SI

€1.2dNAN0 MSYL LINSTY LN ALVILNV.LSNI
ON

$1£2ANANO ASVL L1INSTA LA
AVATO

0TLZ (QALVIINVLSK
QFA0 MSVL LINSAY L

019t A

S0ZT NOHA

US 9,424,050 B2

Sheet 49 of 57

Aug. 23, 2016

U.S. Patent

4.7 TANOIA

029 0L

-

£9,7ANAN0O MSY.L NOLLNOIXd TVOO0TILYLLNYISNI

S9LT ANANO MSV.L
NOILNDAXT TVI0T AVATIO

09L¢ (AH.LVILNV.LSNI
N0 MSVL NOLLNOFXA TvO0T
SI

SdA

£5.24NAN0 JASVL L1NSTd TVIOT ALVILNVISNI

$SLT
A4NAN0O JASVL L1NSTA TVIOT
AVATD

0$LT (A9.LVILNV.LSNI
gn0 MSVL 11INSTd TvVO0T

ﬁ SPLT IO VLT INOYL w

US 9,424,050 B2

Sheet 50 of 57

Aug. 23, 2016

U.S. Patent

V8T HdNOId

0€8Z ASV.L AIAOWHYE FHL HLIM AVIYHL ITEVIIVAY HL
ag94d ANV ndN0 ASVL NOILNDIXA LA WO¥A JSY.L JAOWTY J

€287 ¢'100d
NI STV IIVAY AVHIHL ANV §

ﬁ NOd g _ OT8TUALINE
ANEND MSVL NOLLNDAXT LI SI
P9 NO¥S
NOILNDEXH TVvI0T ANV DNISSEO0UAILINA DNIMOO1E AIOAY OL AVEYHL QILVILNVLSNI NV NI
o557 —

US 9,424,050 B2

Sheet 51 of 57

Aug. 23, 2016

U.S. Patent

9¢8C TOOd NI H'TdVTIVAV

SV Q4LVNINYA.L AVAYHL FHL AVIA
+ D8C TINOIA

_ pEST

LNdLNO FHL HLIM NAN0 ASVL L1nSTY 1N
T ANV AILYNIANYAL

AVAIHL FHL A9 AILNOAXA ASV.L GHL NI ‘ANV
A1 ‘AIAINOIV SONLAW ANV LNdLNO TIOLS

| 7687

ADVETIVO NOILVNIWYAL AVAIHL AT

; S187 ANILL NOLLNDAXH MSVL ONRNNSVAN ANT

P PP PR Py U PSPPI i

» 8¢ 4dNOIA

1€87 AOHLI HL WOYAd AANINLTA

HONVLSNI A4IdIAOW JO/ANY 1LNd1NO FAIHOTA
ANV SLOdNI ANV JONV.LSNI HLYRIdOYddV

HHI HLIM YSV.L dHL 40 AOHLAW dHL T1VD

R A —

] 0182 ENILL NOILNDEXH MSV.L ONRINSVAN I¥VILS |

US 9,424,050 B2

Sheet 52 of 57

Aug. 23, 2016

U.S. Patent

V6T H4NO1d

A4TEYNT LON SINOILVINTNNALSNI A1 dddTAS 39 AVIN

<

_ S96TALINE
anand NSV NOLLNOAXE di
SI

0967 ANANO NOILNDAXA SASVL AAZI'TVIIES 90!
OL WMO4 Q4ZITV1¥4S JSV.L dHL aay

+

0€67 IONV.LSNI ONIATHIANN ANV S¥3D0NA0Ed
LNANITTV 40 WO QIZITVIYAS ANI/ALYIID

%
$T67 ANYN AOHLAW ANV ‘ANYN

SSV1D ‘Al MSV.L HL HLIM W04 QIZI'TVIYES ASVL
gHL TT1d ANV W04 QAZITVIYES ASV.L V ALVILNY.LSNI

A
€267 dYW 'TVO0T SASV.L AHL
NI FONTYAATI NSVL FHL HLIM dI MSVL FHL TIOLS
ANV JISVL FHL OL dI JSY.L dN0INN V LVOOTTV

.. b

; 1267 ANILL TIVIIAO MSV.L ONRINSVAW LYVIS |

b i e * ... !
0262 4NFNO ASVL NOILNDAXT dN
IWOHA MSV.L V HAQWTY ANV avad

0992

-AINO NOILVINAWNYLSNI 304 AHNIOLYEd SNOLLVYTdO e -

£L6C
+ANOd 90f S1

§L6T OL

TL6T NOLLAJIXH TvDOT WdO4ddd

Pl

> 0L6TUIYD OL 4Of ANHAS

0L9TOL

167 dVI TVDOT SASVL V ALVILNVLSNI ‘90l
HHL OL dl 40f V 41¥D0TTV ANV 9Ol V 4 LVILNVLSNI

" 0I6T(ALINA
O_ASVL NOLLNOIXE dIA

059C NOUd

US 9,424,050 B2

Sheet 53 of 57

Aug. 23, 2016

U.S. Patent

0L9TOL 467 TANOII
o R Nmmm.m__m.ﬁ.-m N
. SHLNIHLIM MSVIHOVI OLSOMIawdoraay 1
oot mma e *.!-..i“ T €667 !!!niiii.!!.f
9667 ATYD THL NI SYOSSADOMd IO ON/ . | sda 7= ~GONIMYINHONAG. -~
| dNQAAdS 014001 = ADNAIDIAT 8Of ILNINOD | S, . S

m $667 ANLL TIVYHAO dOf / HWIL HDNISSHIOUd
i TYOOTTVALYIA 901 = dNAAddS g0f 41NdNOD |

0667

“ %agmﬁmﬁm
i 0LQI90r HLIM ONOTY SOIYLAN JSV.LAaY |

; L3867 AWLL ONISSTO0Ud !
t 1VD0T1TVNLYIA 80f OL MSV.L LIVAIALNNOD !
M gHL 40 GALL DNISSAD0Ud TVIOT
i aav anv anand MSvl 1INsTd TvOO0T i
i NI SV LVAUAINNOD FHL ANI w

“ HNLL TIVHFAO JSVL WOYA HNILL NOILIDAXH TVIOT _
! HAOWHY ANV HAIL TTVIHAO MSVL ONRINSVAN dNH

|||

2667
HALL TTVIHAO 40 WO FAILL NOILNDJAXH TVOO0T
m>02mm ANV JNIL TIVIIAO 90f DNIINSVAN aNd

SdA

1667 (ALJNE 3NAN0 S1INS
Y SASY.L qIZITVIHAS €0!

ON

186T LNdLNO

MSVL dHL NI LNd1NO 9HL 3ZTTVIASEa

_ 0867 HALL NOILVZI'TVII4SHA
i TVOOTONMNSVAN LYV.LS ANV
1 HZISIWYOJ dZITVIyds LNd1N0 ININYELAQ ;

6L6T IVIN TVIOT SASY.L FHL NI I

MSV.L AHL DNISN IINTIIITY JASY.L HHL ANIL
A

LL6T ANAND SLINSTY SASVL AdZITvIIasS 901

INOYA ASV.L V AAONTY ANY avad |

.
i $L670¥4Z Ol
i AWLL DNISSTO0¥d T¥D0T TVNLYIA €Of 13S |

€L6T WO

US 9,424,050 B2

Sheet 54 of 57

Aug. 23, 2016

U.S. Patent

0967 OL

ON

050¢ ¢ HONVLS
DNIATIHANI

A0 ¥I0NA0dd

PE0€ VI TVIOT WO AdzZITviyds ¢
NI I WdOA
AAZI'TVIIAS HLIM GWIL NOLLVZITVIIAS i

ANV dZ1S W04 AIZI'TVIRIES 4018

e ;

NdNI TION ANY

0£0€ dVIN 'TVO0T W04 QEZITVINAS NI
(W04 qaZITYIHAS ‘a1 WS04 A ZITVIHas

‘AT IONVISNI ONIATIAANN
$¥0€ W04 9ZITYIIES O AT ¥40NA0Ud LNNI) TAOLS
_ _ £p0€ dv MSVL FHL OL SONVLSNI -
OISO wsewomnanivsy ||
04 QHZITYIHAS) THOLS a1 WAOd 4ZI'TVIEdS day i NY0J Q4ZITVIEES LNdNI aNINNALAd
Y S
ON 0bOE &dV w 920¢ TNLL
W S04 a3ZITVRIAS 901 i NOLLVZITVIEAS TVOOTONIINSYIN ANH
Ul N4 Gz VI A S g ;
a #70€ MO AAZITVIYAS V ALYAAD
_ L _ S N
SI0E VI TVOOT WYOd THZITVIIIS _ 720€ ANIL NOLLVYZITYTdAS "
> FHL WO¥d W04 QAZITvVIddS THL i TYD0T ONDINSYAN LAVLS |
ANV Al W04 QaZI'TVIAS FHL avad G R i

020¢ dI WJOd ddZI'TVIdAS V ALVO0TIV

010¢ 6ATN AONV.LSNI DNIATIANN HHL

Y0 AT ¥IONAO0™d LOINI HHL NO dISve dVIN 1VD01
W04 JIZI'TVIIES NI JHLVHED AAVEITY
SdA HONVLISNI DNIATIHANN FHL 40 Wd0d AIZITVIFAS

gdI21d0dd LNdNI NV 40 W04 A4ZI'TV

ST6C WOUL

0€ FTANOIA

US 9,424,050 B2

Sheet 55 of 57

Aug. 23, 2016

U.S. Patent

ev1e NOLLINIAHA
MSV.L OL LNANI d0 HONV.LSNI AdVv

a

8¢1¢ WO dAZI'TVIdaSHA HLIM
AMINA dVIN SIWJOd QHZITVINAS 901 HOIUNA

NOILVZI'TVIddSad LNV.LSIA ONIINSVAN ANd

PR *

vele AdLNH

dVIN SINJOA qAZI'TYIIAS 9Of AZI'TVI¥ESaa

................................... |

ZE1€ ANIL
NOLLVZITVIMASEA INV.LSIA ONIMNSVAN LAVIS |

...

061¢ JOTIH NANLAA

801€ HNVN AOHLIW ANV ‘HWVN SSVTD

‘SAI LOdNI ONIA'TOH WO QHZI'TVILS MSV.L
HLIM DNOTV dVIN SWJOd AdZI'TVIgdsS €0f
YHHILV4SIA dID WO ATHOF

091€ OL

SSTE {(@azZITVIIasa@ Y 1¢ TdNOId

J4LNILLSNODHY
ATHLITINOD

SINSVL “d'D Q4SS300dd

Al IONVISNI ANV SdI

LNdNI TTV TV ON

0S1¢€ JONVISNI HH.L JO LOdNI HHL
JO W04 AIZI'TVINASHA LOVALXH

JAHZITVIYASdd AQVET TV
AULNA dVIN SWIO4™
adzZITvidds dor sI

(ANNOA dI HONV.LSNI HHL
MO dI LNdNI HHLL S1

TIE dVIN SWHOd AZITVYI™AS 40f HHL WO

ot

Al IIONVLSNI dHL ¥0 dI LOdNI MSVL V d11 001

»

0T1€ ASV.L ALNIILSNODTY

> OL JNVN AOHLIN ONISN AOHIFN
ANV FINVN SSVTD ONISN SSVTID JLVDOT

MO ONILNdINOD INVLISId

US 9,424,050 B2

Sheet 56 of 57

Aug. 23, 2016

U.S. Patent

g1¢ TANDI
agTEYNI LON SI NOLLVINIWNALSNI AT A9ddINS 38 AVIN
‘AINO NOILVINAWNYLISNI 04 QIANOIYAd SNOILVYHdO -omocove. ;
081¢
¥IHOLVASIA Ardd FHL OL JOVE MSV.L ANAS
jTmimim s e H - " O@— M
! LIEASVL NI SORILAW HYIOLS | GWIL ONISSEO0Ud LNV.LSIA ONIMNSVAN aNd

NOILVZI'TVIYES LNVISIA ONINSVIN NI

PLIE ANIL

CLIENSVL dHL OL 1NdLNO AAZITVIIdS
HHL HOV.LLY ANV dDNV.LSNI d4I41dON
YJO/ANV LNdLNO dINANLAY HHL HZITVIYHS

0L1¢ INIL
NOILLVZI'TVIddS INV.LSIA ONIINSVIN LEV.LS

91¢ AOHLIW HHL

WO ININLTY HONVLSNI AIIAION dO/ANY
LNdLAO FAIIOTY ANV SLOINI ANV HONV.LSNI
HLVIIdO¥ddV JHL HLIA AOHIIW dHL TIVD

SS1E€ NOYd

US 9,424,050 B2

Sheet 57 of 57

Aug. 23, 2016

U.S. Patent

€L6T OL

—0v2¢ LALINE 3NAND
MSY.L NOILNOEXE TvO0T

¢ JdNOId

0€Z€ ANAND MSY.L LINSTA TVI0T OLNI JSV.L HSNd

02CE ASVL FHL NI L0dLNO FAOLS

... A

Z12€ ANIL NOILNOIXE TYD0T ONMMNSYIN AN

b e e e e e e et m m @ E e e e e = E E e m e m e !

7y

017€ QOHLANW FHL WOYd

AANINLTI IONVISNT QATIIIAONW JO/ANV LNdLNO
DNIAIFOTY ANV SLNdNI ANV FONVLISNI 4LYI4dOdddY
dHL HLIM AOHLAW dHL ONITIVD A9 ATIVIOOT MSVL
FLNOAXA ANV ANdNO ASV.L NOILNIIXH TVIOT
WO JMSVL IAONTA

0L6T WOYA

US 9,424,050 B2

1
PARALLELIZATION AND
INSTRUMENTATION IN A PRODUCER
GRAPH ORIENTED PROGRAMMING
FRAMEWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
11/607,196, filed Dec. 1, 2006, which is hereby incorporated
by reference.

BACKGROUND

1. Field

Embodiments of the invention relate to the field of com-
puters; and more specifically, to the field of programming and
executing code with a runtime.

2. Background

Object-Oriented Programming

Object-oriented programming is a computer programming
paradigm. The idea behind object-oriented programming is
that a computer program may be seen as comprising a collec-
tion of individual units (called objects or instances) that act on
each other, as opposed to a traditional view in which a pro-
gram may be seen as a collection of functions, or simply as a
list of instructions to the computer. An object is a language
mechanism for binding data with methods that operate on that
data. Each object is capable of being called through methods,
processing data, and providing results to other objects. Each
object can be viewed as an independent machine or actor with
a distinct role or responsibility.

A reflective object-oriented language is a programming
language that has a particular set of characteristics (e.g.,
classes, objects/instances, inheritance, reflection, etc.),
whereas a reflective object-based language is sometimes used
to label a programming language that has some subset of
those characteristics (e.g., objects). For purposes of this docu-
ment, the phrases “object-oriented source code” and “object-
oriented code” will be used to refer to code written in a
language that has such characteristics (e.g., code written in a
reflective object-oriented language, code written in a reflec-
tive object-based language). While procedural languages,
non-reflective object-oriented languages, and non-reflective
object-based languages are programming languages that do
not typically support such characteristics, transformation
techniques may be used to provide such characteristics (e.g.,
through emulation) to code properly written in such lan-
guages; and thus, such techniques transform such languages
into a reflective object-based language or reflective object-
oriented language. (These techniques need not emulate all
characteristics of object oriented or based languages, but may
emulate only those characteristics which are of interest to the
rest of this document) For purposes of this document, the
phrases “object-oriented source code” and “object-oriented
code” will also be used to refer to such transformed proce-
dural, non-reflective object-oriented, and non-reflective
object-based language code. By way of example, and not
limitation, this document primarily describes object-oriented
source code written in a reflective object-oriented language.
Also, the terms object and instance are used interchangeably
herein.

Used mainly in object-oriented programming, the term
method refers to a piece of code that is exclusively associated
either with a class (called class methods, static methods, or
factory methods) or with an object (called instance methods).
Like a procedure in procedural programming languages, a

15

20

25

35

40

45

50

2

method usually consists of a sequence of statements to per-
form an action, a set of input parameters to parameterize those
actions, and possibly an output value of some kind that is
returned.

When programmers write a program using an object-ori-
ented language, the resulting code can be conceptually
viewed as including four basic types of code. The first type
includes commands that operate on input instance(s) to pro-
vide output instance(s) (referred to herein as “transforma-
tion” code); typically written as methods (referred to herein
as “transformation” methods). The second type includes
instance instantiation commands that cause the runtime to
instantiate instances of classes (referred to herein as “instance
instantiation” code). The third type includes property
manipulation commands (referred to herein as “data prepa-
ration” code) to invoke property methods (accessors, muta-
tors, etc.) of the above instances. The fourth type includes
sequences of commands that cause method invocation
sequencing using the appropriate instances (where the appro-
priate instances include the instances to use as arguments, the
instances to be used by instance methods, and the meta class
instances used by class methods) to specify what transforma-
tion methods of what instances to invoke, in which order, and
with which parameters of which instances responsive to the
changes made by data preparation code (referred to herein as
“manual invocation sequencing” code). The manual invoca-
tion sequencing code is sometimes written as methods sepa-
rate from the transformation methods, and thus the manual
invocation sequencing code includes sequences of invocation
commands for the transformation methods. A program typi-
cally iterates between data preparation code and manual invo-
cation sequencing code (which may also dip into the instance
instantiation code), which in turn invokes transformation
code (which may also dip into the instance instantiation code
and data preparation code types). It should be noted that this
is a conceptual representation of a program, and thus, should
not be taken as an absolute with regard to how to view a
program.

Runtime

The term runtime is used herein to refer to a program or
library of basic code that runs other code written in the same
and/or a different language. Thus, a runtime is a collection of
utility functions that support a program while it is running,
including working with the operating system to provide
facilities such as mathematical functions, input and output.
These make it unnecessary for programmers to continually
rewrite basic capabilities specified in a programming lan-
guage or provided by an operating system. Since the demar-
cation between a runtime and an operating system can be
blurred, the term runtime is used herein to refer to code
separate from the operating system and/or code that is part of
the operating system.

Early runtimes, such as that of FORTRAN, provide such
features as mathematical operations. Other languages add
more sophisticated features—e.g., memory garbage collec-
tion, often in association with support for objects. More
recent languages tend to have considerably larger runtimes
with considerably more functionality. Many object-oriented
languages also include a system known as the “dispatcher”
and “class loader.”” The Java Virtual Machine (JVM) is an
example of such a runtime: it also interprets or compiles the
portable binary Java programs (byte-code) at run time. The
common language runtime (CLR) framework is another
example of a runtime.

Programming and Execution Framework

One framework within which applications are provided to
end users includes three basic divisions. The first division

US 9,424,050 B2

3

includes the creation of the operating system and runtime.
This first division is performed by programmers with highly
advanced programming skills. When working in this division,
programmers are respectively referred to as operating system
programmers and runtime programmers. When creating a
runtime for an object-oriented language, the runtime pro-
grammers include support for executing the various types of
commands used in transformation code, instance instantia-
tion code, data preparation code, and manual invocation
sequencing code (e.g., instance instantiation commands, data
preparation commands, and method invocation commands).

The second division includes the creation of object-ori-
ented application source code to be run by the runtime. The
second division is again performed by programmers with
highly advanced programming skills, as well as an under-
standing of the business objectives of the application. When
working in this division, programmers are referred to as appli-
cation programmers. When creating an application in an
object-oriented programming language, the application pro-
grammers write the specific transformation code, instance
instantiation code, data preparation code, and manual invo-
cation sequencing code for the specific application being
created. As part of this, if the application requires a graphical
user interface, the application programmers also design and
code the graphical user interface for the specific application;
and thus are also referred to as application designers.

The third division includes the use of application programs
being run by the runtime. The third division is performed by
end users that need not have any programming skills.

Manual Invocation Sequencing Code

The greatest costs typically associated with the creation of
an application involve the debugging and/or optimization of
the manual invocation sequencing code. For each opportunity
for data to change, the application programmer must consider
its effect and write manual invocation sequencing code to
cause the appropriate transformation methods of the appro-
priate instances to be invoked in the appropriate order with the
appropriate inputs. Exemplary mistakes made by application
programmers include: 1) invoking the appropriate transfor-
mation methods of the appropriate instances in the wrong
order; 2) forgetting to include commands to cause the one or
more required transformation methods of instances to be
invoked responsive to some data being changed; 3) including
commands to cause unnecessary transformation methods of
instances to be invoked responsive to some data being
changed (e.g., including commands to invoke transformation
methods of instances that are not affected by the change in
data), etc.

By way of example, one technique of generating manual
invocation sequencing code is the use of the observer pattern
(sometimes known as “publish subscribe”) to observe the
state of an instance in a program. In the observer pattern, one
ormore instances (called observers or listeners) are registered
(or register themselves) to observe an event which may be
raised by the observed object (the subject). The observed
instance, which may raise an event, generally maintains a
collection of the registered observers. When the event is
raised, each observer receives a callback from the observed
instance (the observed instance invokes a “notify” method in
the registered observers). The notify function may pass some
parameters (generally information about the event that is
occurring) which can be used by the observers. Each observer
implements the notify function, and as a consequence defines
its own behavior when the notification occurs.

The observed instance typically has a register method for
adding a new observer and an unregister method for removing
an observer from the list of instances to be notified when the

10

15

20

25

30

35

40

45

50

55

60

65

4

event is raised. Further, the observed instance may also have
methods for temporarily disabling and then reenabling calls
to prevent inefficient cascading of a number of related
updates. Specifically, callbacks called in response to a prop-
erty value change often also change values of some other
properties, triggering additional callbacks, and so on.

When using the observer pattern technique, application
programmers writing manual invocation sequencing code
specify what methods of what instances to call, in which
order, and with which inputs by registering, unregistering,
disabling, and reenabling observers to different observed
instances, as well as writing the notify and callback methods
for each. More specifically, the relationship between observer
and observed instances is locally managed (by the observed
instance alone, without synchronization with other observed
instances) within the observer pattern, and thus the manual
invocation sequencing code needed to synchronize events
from multiple observed instances is typically part of the spe-
cific callback methods of each observer.

Overwriting, Volatile Call Stack

Typical runtimes use an overwriting, volatile call stack to
track currently invoked, uncompleted calls. An overwriting,
volatile call stack is overwriting in that it pops off and dis-
cards entries as each call is completed, and volatile in that it is
discarded and rebuilt on every execution. Typical runtimes
use overwriting, volatile call stacks because typical runtimes
combine the building of the overwriting, volatile call stack
with the actual invocation of the appropriate transformation
methods of the appropriate instances with the appropriate
inputs responsive to execution of the manual invocation
sequencing code. In sum, responsive to execution of manual
invocation sequencing code, a typical runtime determines the
transformation method of instance sequencing call by call (as
each call is made) and maintains the overwriting, volatile call
stack to track only currently invoked, uncompleted calls.

Program Execution and Parallelization

Conventionally, methods in a program are executed
sequentially based on the manual invocation sequencing
code. To improve the efficiency and speed of execution, some
methods may be executed in parallel in systems that support
parallelization. In general, parallelization in computing is the
execution of multiple processes, tasks, or threads, simulta-
neously. To implement parallelization, application program-
mers may identify methods that are desired to be executed in
parallel, and then rewrite the manual invocation sequencing
code to cause the methods identified to be executed in paral-
lel.

Currently, common parallelization mechanisms supported
in computing include multiprocessing and multithreading. In
multiprocessing, an application program is typically divided
into multiple tasks. Each task is a logically high level, dis-
crete, independent section of computational work executable
by a processor. To achieve parallization, at least some of the
tasks are executed on multiple processors simultaneously.
The processors may be coupled to each other via a network
and be collectively referred to as a grid. The processors in the
grid may include local processors, distant processors, or a
combination of both.

Besides multiprocessing, another common parallelization
mechanism is multithreading. A thread is a local process to
execute a task. A processor that supports multithreading may
execute multiple threads substantially in simultaneously. One
example of such a processor is a multi-core processor, where
each core of the multi-core processor may execute a thread.

By way of example, one conventional technique in paral-
lelization is to analyze the source code of an application
program to extract a configuration of the application program.

US 9,424,050 B2

5

Based on the configuration, the application program is
divided into a number of sub-programs, which are presented
in a graph based on the sub-programs’ parent-child relation-
ships. These sub-programs are executed in parallel based on
the sub-programs’ parent-child relationships.

In some conventional computing system, analysis of the
intermediate code generated from the source code may be
performed to achieve parallelization. For example, analysis
of intermediate code (e.g., assembly language) and parallel-
ization is done during compilation. A parallelizer of the com-
piler converts the intermediate code into a parallelly execut-
able form. An execution order determiner determines the
order of the basic blocks to be executed. An expanded basic
building block parallelizer subdivides the basic building
blocks into execution units, each made up of parallelly
executable instructions. Analysis of dependency is done on an
instruction basis.

However, the conventional techniques described above all
require analysis of the manual invocation sequencing code in
the application program, which is written by application pro-
grammers. Thus, the burden of parallelization is put onto the
application programmers because great care has to be taken
when writing the manual invocation sequencing code in order
for the parallelization to be performed correctly. Thus, the
application programmers need to possess a relatively high
level of programming skill.

To make the job of application programmers easier, some
conventional techniques have been developed to perform par-
allelization of application programs without requiring high
level of programming skill. For example, special language
constructs and special wrapper classes around regular data
types are provided to execute a sequential program in parallel.
Programmers are not required to write a “parallel program” in
order to have parallel execution of parts of the program. A
parallel procedure is specified at calling point by specifying a
parallel procedure identifier and its arguments to the system.
Execute parallel function to execute different parts in parallel
is provided. Parallel procedures may be written by making a
new class derived from a common class corresponding to
each parallel procedure in the program. The system resolves
dependencies at run time and parallelization is done to the
level where actual dependency is encountered. The compiler
may determine whether arguments can be modified in the
parallel procedure through analysis of the control flow graph
of the parallel procedure.

In another conventional computing system, a database
manager is used in executing user-defined functions in an
application program without the need of hard-coding all the
parallelism support in the computer program itself. A data-
base table is defined with instructions the user wants to
execute in parallel. A user-defined function is then defined
that executes the instructions in the table. The database man-
ager provides parallelism by executing multiple tasks in par-
allel in the user-defined function.

Software Instrumentation

In general, software instrumentation refers to techniques
for observing the behavior of one or more application pro-
grams and collecting metrics relevant to the application pro-
grams and the execution thereof. Thus, software instrumen-
tation is a valuable tool in development as well as
maintenance of an application program as the application
program and/or the execution of the application program may
be improved in various ways based on the behavior of the
application program and the metrics collected.

Currently, various techniques have been developed to
implement software instrumentation. For example, one tech-
nique is to add software modules or code to record the execu-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion history of an application program such that future execu-
tion of the application program may be managed based on the
execution history recorded. In another example, a compiler
generates instruction and metadata for monitoring and col-
lecting metrics. If a selected indicator is associated with an
instruction, counting of events associated with the execution
of the instruction is enabled. Then the number of times an
instruction is executed is counted. After execution of the
application program, hotspots are identified to determine per-
formance improvement methodology and source code of the
application program may be modified accordingly to imple-
ment performance improvement methodology.

Another conventional technique in instrumentation is to
use the intermediate representation (IR) data generated from
the source code of an application program. Specifically, a
compiler generates IR data from source code. A code instru-
mentation module acts on the IR data to construct an IR tree
and to add instrumentation to the IR data based on the IR tree.
Then the compiler finishes compilation by converting the IR
data with instrumentation into object code. A class instance
can be instrumented using an instrumentation library (here-
inafter, an instrumentation DLL). A virtual machine (VM)
runtime module may run the instrumented class instance.
There are declarations of method names and parameters in the
byte code in the class instance. A special designator indicates
that the executable portions correspond to the declared meth-
ods are found in some blocks of native code separate from the
VM runtime module. For example, the instrumented Java VM
byte code may be monitored during execution by a monitor
process and a monitor library (a.k.a. a monitor DLL).

Object-Relational Mapping

Object-Relational mapping is a programming technique
that links relational databases to object-oriented language
concepts, creating (in effect) a “virtual object database.”
Some object-relational mappers automatically keep the
loaded instances in memory in constant synchronization with
the database. Specifically, after construction of an object-to-
SQL mapping query, first returned data is copied into the
fields of the instances in question, like any object-SQL map-
ping package. Once there, the instance has to watch to see if
these values change, and then carefully reverse the process to
write the data back out to the database.

Hibernate 3.0 is an object-relational mapping solution for
Java and CLR (Jboss® Inc. of Atlanta, Ga.). Thus, Hibernate
provides a framework for mapping an object-oriented domain
model to a traditional relational database. Its goal is to relieve
the developer from some common data persistence-related
programming tasks. Hibernate takes care of the mapping
from classes to database tables (and from object-oriented data
types to SQL data types), as well as providing data query and
retrieval facilities. Hibernate is instance centric and builds
graphs representing relationships between instances.

Inversion of Control and the Dependency Inversion Prin-
ciple

Inversion of Control, also known as IOC, is an object-
oriented programming principle that can be used to reduce
coupling (the degree to which each program module relies on
each other module) inherent in computer programs. I0C is
also known as the Dependency Inversion Principle. In IOC, a
class x depends on class v if any of the following applies: 1) x
has a v and calls it; 2) x is a v; or 3) x depends on some
class z that depends on v (transitivity). It is worth noting that
x depends on Y does not imply v depends on x; if both happen
to betrue, itis called a cyclic dependency: x can’t then be used
without v, and vice versa.

In practice, if an object x (of class x) calls methods of an
object y (of class v), then class x depends on yv. The depen-

US 9,424,050 B2

7

dency is inverted by introducing a third class, namely an
interface class 1 that must contain all methods that x might call
ony. Furthermore, v must be changed such that it implements
interface 1. x and v are now both dependent on interface 1 and
class xno longer depends on class v (presuming thatx does not
instantiate v). This elimination of the dependency of class x
on v by introducing an interface 1is said to be an inversion of
control (or a dependency inversion). It must be noted that v
might depend on other classes. Before the transformation had
been applied, x depended on vy and thus x depended indirectly
on all classes that v depends on. By applying inversion of
control, all those indirect dependencies have been broken up
as well. The newly introduced interface 1 depends on nothing.

The Spring Framework is an open source application
framework for the Java platform that uses IOC and depen-
dency inversion. Specifically, central in the Spring Frame-
work is its Inversion of Control container that provides a
means of configuring and managing Java objects. This con-
tainer is also known as BeanFactory, ApplicationContext or
Core container. Examples of the operations of this container
are: creating objects, configuring objects, calling initializa-
tion methods and passing objects to registered callback
objects. Objects that are created by the container are also
called Managed Objects or Beans. Typically the container is
configured by loading XML files that contain Bean defini-
tions. These provide all information that is required to create
objects. Once objects are created and configured without
raising error conditions they become available for usage.
Objects can be obtained by means of Dependency lookup or
Dependency injection. Dependency lookup is a pattern where
a caller asks the container object for an object with a specific
name or of a specific type. Dependency injection is a pattern
where the container passes objects by name to other objects,
either via constructors, properties or factory methods. Thus,
the Spring Framework is memory centric and builds graphs
representing relationships between instances.

Graphing Tools

Javadoc™ is a tool that parses the declarations and docu-
mentation comments in a set of Java source files and produces
a corresponding set of HTML pages describing (by default)
the public and protected classes, nested classes (but not
anonymous inner classes), interfaces, constructors, methods,
and fields (Sun Microsystems®, Inc. of Santa Clara, Calif.).
Javadoc can be used to generate the API (Application Pro-
gramming Interface) documentation or the implementation
documentation for a set of source files. Javadoc is class and
method centric and builds graphs representing the relation-
ships between the combination of classes and their methods.

Another system for designing software applications
includes graphs of objects analyzed by an interpreter to rep-
resent and reproduce a computer application. This system
utilizes prewritten programming classes stored in code librar-
ies, which can be written to follow the design patterns
described in “Design Patterns” by Gamma et al, Addison
Wesley 1995, “Patterns in Java” by Grand, Wiley Computer
Publishing 1998, and/or high level Computer Aided Software
Engineering (CASE) tools. More specifically, some such
classes are based on the Observer behavioral pattern. The
prewritten code libraries represent application state nodes,
processing logic, and data flow of the system between various
application states (i.e., the pre-written data elements of the
application), so that a user need not write, edit, or compile
code when creating a software application. Instead, a user
manually edits a software application in a Graphical User
Interface by editing visual objects associated with a current
application state node, such as data within the application
state node or processes performed within the application state

25

30

40

45

8

node. Then, based on the changes made by the user to the
current application state node, the interpreter displays the
updated application state to the user for the application state
which has just been edited. The system may then transition
along a user-defined transitional edge to another application
state where the user may optionally edit the next application
state or the transitional edge. Changes to a graph may be made
to instances of the graph which are implemented by the inter-
preter while the software application is running

This system for designing software applications may
include visual representations of a running software applica-
tion that can be made “usable” with an application controller.
When a user changes visual objects, representing the running
software application, the controller uses the input to induce
the interpreter to make the change to the graph. The controller
then waits for more changes. Further, visual representations
of'such software applications may be imported or exported as
XML documents that describe the visual representation of the
application, and thereby the software application.

In order to edit and/or create a software application, in the
form of a visual representation of nodes, directed edges, and
application states, an application program interface and an
application editor may further be included in the system. Key
words, and associated definitions, from the pre-written code
libraries, enable application developers to manually define a
software application, processing steps, as well as the visual
representation of a software application by providing graphi-
cal representations, within an editor, of a graph application
which closely correlates to the actual application structure. A
user defines a new application through an “application defi-
nition wizard,” which after certain preliminary matters are
fulfilled, displays the new application as a graph component
within the editor workspace. A user further interacts with an
application by making selections from displayed lists of pre-
created possible application components and dragging and
dropping components onto the workspace using a PC’s
mouse and keyboard. A user may select components and
“drag” them over existing components. When a new compo-
nent is “dropped” on an existing component, the new com-
ponent becomes a child of the existing component within an
application graph. The relationships of components within
the application are manually defined by the user’s selections
within the editor. Thus a tree structure representing an appli-
cation is built by the user. As the application is created, a user
can select an application navigator viewer to display a tree
view of the constructed application making it possible to
select and edit any component of the application. The editor
interface processes user inputs and selections including cre-
ating or deleting application elements, updating component
attributes, and updating display properties of an application.

The system described above, while utilizing visual repre-
sentations of software applications, may also be used as a
visual programming tool for defining and updating relational
databases. The system utilizes XML descriptions of visual
representation of software applications. A tool parses and
interprets the XML descriptions to produces equivalent rela-
tional database table schemas, as well as changes thereto.
When data is changed within a visual representation of a
software application, a description of the change is stored
along with other changes in a journal file and then processed
as a group. An intermediate program (a java application oper-
ating on its own thread) performs transactions between the
visual representation of the software application and the rela-
tional database. The java application polls (i.e., checks) the
journal of changes to nodes of the visual representation (i.e.,
data in database), and if there are changes, makes the changes
to the database. Thus, by altering data within the visual rep-

US 9,424,050 B2

9

resentation, the system updates a database. A similar appli-
cation stands between the visual representation of the soft-
ware application and the database to handles requests for data
from the database.

Another system for analyzing software is called a Code
Tree Analyzer (CTA). A CTA analyzes static source code
written in an object-oriented programming language. The
CTA generates a symbol table and a call tree from the static
source code. Using the symbol table, the CTA generates a
class diagram. Likewise, using the call tree, the CTA gener-
ates a sequence diagram. The class diagram illustrates the
relationship between a user selected class and classes related
to the user selected class. The sequence diagram illustrates
the sequence in which different methods are called. Using
both the class diagram and the sequence diagram, the CTA
generates a design artifact representative of the static source
code. When the user modifies the design artifact, the CTA
identifies impacted portions of the source code using the
sequence diagram. The design artifact is used for code main-
tenance and/or reverse engineering of the static source code.

U.S. Pat. No. 5,966,072 describes use of a graph to invoke
computations directly. Getting information into and out of
individual processes represented on the graph, moving infor-
mation between the processes, and defining a running order
for the processes, are discussed. The described arrangement
adds “adaptor processes”, if necessary, to assist in getting
information into and out of processes.

BRIEF SUMMARY

Embodiments of parallelization and/or instrumentation in
a producer graph oriented programming framework have
been presented. In one embodiment, a request to run an appli-
cation program is received, wherein object-oriented source
code of the application program includes methods and pro-
ducer dependency declarations, wherein the producer depen-
dency declaration for a given method identifies a set of zero or
more producers with outputs that are an input to the given
method, wherein a producer is at least an instance and a
method associated with that instance. Further, execution of
the application program may be parallelized based on depen-
dency between producers of the application program using
the runtime. In some embodiments, the application program
is instrumented using the runtime.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1A is a block diagram illustrating the relationship of
a producer dependency declaration for a method of'a class in
object oriented-source code to an instance of a producer
based on that method from a given instance, according to one
embodiment of the invention;

FIG. 1B illustrates exemplary relationships between the
producer 110A and the parent producer 114A.1 according to
one embodiment of the invention;

FIG. 1C illustrates exemplary relationships between the
producer 110A and the child producer 112A.1 according to
one embodiment of the invention;

FIG. 1D illustrates some additional exemplary combina-
tions of relationships of parent producers 114 and child pro-
ducers 112 to producer 110A according to one embodiment
of the invention;

20

25

30

40

45

50

60

10

FIG. 1E illustrates that different instances of the same class
can have producers based on the same and/or different meth-
ods according to one embodiment of the invention;

FIG. 2 is a block diagram illustrating the reusability of a
runtime with producer graph oriented programming support
according to one embodiment of the invention;

FIG. 3A is a block diagram illustrating a runtime with
producer graph oriented programming support according to
one embodiment of the invention;

FIG. 3B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs
according to one embodiment of the invention;

FIG. 4A is a block diagram illustrating the discovery and
building of an exemplary producer graph according to one
embodiment of the invention;

FIG. 4B is a block diagram illustrating the initial execution
of the producer graph of FIG. 4A according to one embodi-
ment of the invention;

FIG. 4C is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B according to one
embodiment of the invention;

FIG. 4D is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden according to one embodiment
of the invention;

FIG. 4E is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden and independent source pro-
ducer 3 has been modified according to one embodiment of
the invention;

FIG. 5A is a block diagram illustrating the discovery and
building of an exemplary producer graph including an unre-
solved dependency according to one embodiment of the
invention;

FIG. 5B is a block diagram illustrating the initial execution
of the producer graph of FIG. 5A and the resolution of the
unresolved dependency according to one embodiment of the
invention;

FIG. 5C is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B according to one embodiment of
the invention;

FIG. 5D is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B or 5C according to one embodi-
ment of the invention;

FIG. 6 is a flow diagram a logical execution flow of a
runtime client and its relationship to a runtime with producer
graph oriented programming support according to one
embodiment of the invention;

FIG. 7A illustrates pseudo code of a producer dependency
declaration for a method using shortcut dependencies accord-
ing to one embodiment of the invention;

FIG. 7B is ablock diagram of exemplary producers accord-
ing to one embodiment of the invention;

FIG. 7C illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut dependency,
and illustrates a block diagram of exemplary producers
according to one embodiment of the invention;

FIG. 7D illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut dependency
according to one embodiment of the invention;

FIG. 7E is a block diagram of exemplary producers accord-
ing to one embodiment of the invention;

US 9,424,050 B2

11

FIG. 7F is a block diagram of an exemplary dependencies
through use of a UpwardDependency with a dependency
determination producer according to one embodiment of the
invention;

FIG. 7G is a block diagram of possible exemplary depen-
dencies through use of a WeaklyConstrainedDependency
with a dependency determination producer according to one
embodiment of the invention;

FIG. 7H illustrates exemplary producer graphs of standard
producers according to one embodiment of the invention;

FIG. 71 illustrates one example of producer dependencies
and dependency determination producers for discovering,
resolving, and building the producer graph of FIG. 7H;

FIG. 8A is a block diagram illustrating a first exemplary
framework within which applications are provided to end
users according to one embodiment of the invention;

FIG. 8B is a block diagram illustrating a second exemplary
framework within which applications are provided to end
users according to one embodiment of the invention;

FIG. 8C illustrates an exemplary screenshot and usage of
free cell selection with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention;

FIG. 8D illustrates another exemplary screenshot and
usage of free cell selection with the configurable interactive
producer output layout graphical user interface module 840
according to one embodiment of the invention;

FIG. 8E illustrates an exemplary screenshot and usage of
table creation with the configurable interactive producer out-
put layout graphical user interface module 840 according to
one embodiment of the invention;

FIG. 8F illustrates another exemplary screenshot and usage
of table creation with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention;

FIG. 9A is a block diagram illustrating a first scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 9B isablock diagram illustrating a second scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 9C is a block diagram illustrating a third scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 10 is a block diagram of an exemplary implementa-
tion according to one embodiment of the invention;

FIG. 11A is a block diagram of an example of the class
tracking structure 1092 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11B is a block diagram of an example of the instance
tracking structure 1065 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11C is a block diagram of an example of the producer
graph(s) structure 1060 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11D is a block diagram of an example of the method
tracking structure 1058 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11E is a block diagram of an example of a serialized
form local map used in multiprocessing according to one
embodiment of the invention;

FIG. 11F is a block diagram of an example of a runtime
setting structure 1048 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11G is a block diagram of an example of a producer-
based configurable decision structure 1049 of FIG. 10 accord-
ing to one embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG.12A is ablock diagram illustrating additional detail of
FIG. 10 to support multiprocessing according to one embodi-
ment of the invention;

FIG.12B is a block diagram illustrating additional detail of
FIG. 10 to support contingent and subscription type dynamic
producer dependencies according to one embodiment of the
invention;

FIG. 13A illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut, non-dynamic
(non-contingent, non-subscription) dependency according to
one embodiment of the invention;

FIG. 13B is a block diagram of producers illustrating an
exemplary non-shortcut, non-dynamic (non-contingent, non-
subscription) producer dependency according to one embodi-
ment of the invention;

FIG. 13C illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut, contingent,
non-subscription producer dependency according to one
embodiment of the invention;

FIG. 13D is a block diagram of producers illustrating an
exemplary non-shortcut, contingent, non-subscription pro-
ducer dependency according to one embodiment of the inven-
tion;

FIG. 13E illustrates pseudo code of producer dependency
declarations for methods using both a non-shortcut, contin-
gent, non-subscription producer dependency and a shortcut,
contingent, non-subscription producer dependency accord-
ing to one embodiment of the invention;

FIG. 13F is a block diagram of producers illustrating a
non-shortcut, contingent, non-subscription producer depen-
dency and a shortcut, contingent, non-subscription producer
dependency according to one embodiment of the invention;

FIG. 13G illustrates pseudo code of producer dependency
declarations for methods using a shortcut, contingent, non-
subscription producer dependency and a shortcut, non-con-
tingent, non-subscription producer dependency according to
one embodiment of the invention;

FIG. 13H is a block diagram of producers illustrating an
exemplary shortcut, contingent, non-subscription producer
dependency and a shortcut, non-contingent, non-subscription
producer dependency according to one embodiment of the
invention;

FIG. 131 illustrates pseudo code of producer dependency
declarations for methods using a shortcut, non-dynamic (non-
contingent, non-subscription) producer dependency accord-
ing to one embodiment of the invention;

FIG. 13] is a block diagram of producers illustrating an
exemplary shortcut, non-dynamic producer dependency
according to one embodiment of the invention;

FIG. 14A is a block diagram of an example of the subscrip-
tion log 1250 of FIG. 12B according to one embodiment of
the invention;

FIG. 14B is a block diagram of exemplary producers illus-
trating a non-contingent, absorbing subscription producer
dependency according to one embodiment of the invention;

FIG. 14C is a block diagram of exemplary producers illus-
trating a non-contingent, sticky subscription producer depen-
dency according to one embodiment of the invention;

FIG. 14D illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a sticky subscription according to one embodiment of the
invention;

FIG. 14E illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a child dependency determination producer, which child

US 9,424,050 B2

13

dependency determination producer is linked by a sequenc-
ing dependency, according to one embodiment of the inven-
tion;

FIG. 15 is a flow diagram for instantiating new instances
according to one embodiment of the invention;

FIG. 16A is a flow diagram for instantiating new producers
and unoverriding producers according to one embodiment of
the invention;

FIG. 16B is a flow diagram for block 1623 of FIG. 16A
according to one embodiment of the invention;

FIG. 17 is a flow diagram for block 1650 of FIG. 16A
according to one embodiment of the invention;

FIG. 18 is a flow diagram for block 1745 of FIG. 17
according to one embodiment of the invention;

FIG. 19 is a flow diagram for block 1630 of FIG. 16A
according to one embodiment of the invention;

FIG. 20 is a flow diagram for blocks 1635 and 1670 of FIG.
16A according to one embodiment of the invention;

FIG. 21A is a flow diagram for overriding producers
according to one embodiment of the invention;

FIG. 21B is a flow diagram for overriding producer execu-
tion mode settings according to one embodiment of the inven-
tion;

FIG. 21C is a flow diagram for overriding execution mode
settings globally at runtime level according to one embodi-
ment of the invention;

FIG. 21D is a flow diagram for overriding execution mode
settings based on the producer-based configurable decision
structure according to one embodiment of the invention;

FIG. 22A is a part of a flow diagram for execution of the
current producer graph(s) according to one embodiment of
the invention;

FIG. 22B is another part of a flow diagram for execution of
the current producer graph(s) according to one embodiment
of the invention;

FIG. 23 is a flow diagram for block 2205 of FIG. 22A
according to one embodiment of the invention;

FIG. 24 is a flow diagram for block 2260 of FIG. 22B
according to one embodiment of the invention;

FIG. 25 is a part of a flow diagram for execution of a set of
ready producers substantially in parallel according to one
embodiment of the invention;

FIG. 26 is another part of the flow diagram for execution of
a set of ready producers substantially in parallel according to
one embodiment of the invention;

FIG. 27A is a part of a flow diagram for instantiating data
structures before executing the set of ready producers accord-
ing to one embodiment of the invention;

FIG. 27B is another part of the flow diagram for instanti-
ating data structures before executing the set of ready produc-
ers according to one embodiment of the invention;

FIG. 28A is a flow diagram for executing producers using
multithreading according to one embodiment of the inven-
tion;

FIG. 28B is a flow diagram illustrating execution of a
thread in multithreading according to one embodiment of the
invention;

FIG. 28C is a flow diagram for handling thread termination
callback according to one embodiment of the invention;

FIG. 29A is a part of a flow diagram for executing produc-
ers using multiprocessing and local execution according to
one embodiment of the invention;

FIG. 29B is another part of the flow diagram for executing
producers using multiprocessing and local execution accord-
ing to one embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 30 is a flow diagram for serializing inputs and/or an
underlying instance of a producer to be multiprocessed
according to one embodiment of the invention;

FIG. 31A is part of a flow diagram for distant computing
according to one embodiment of the invention;

FIG. 31B is another part of the flow diagram for distant
computing according to one embodiment of the invention;
and

FIG. 32 is a flow diagram for local execution of producers
according to one embodiment of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details
such as logic implementations, opcodes, means to specify
operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
invention. It will be appreciated, however, by one skilled in
the art that the invention may be practiced without such spe-
cific details. In other instances, control structures, data struc-
tures, and full software instruction sequences have not been
shown in detail in order not to obscure the invention. Those of
ordinary skill in the art, with the included descriptions, will be
able to implement appropriate functionality without undue
experimentation.

Unless otherwise specified, dashed lines in the figures
(with the exception of dashed dividing lines) are used to
represent optional items in the figures. However, it should not
be presumed that all optional items are shown using dashed
lines, but rather those shown in dashed lines were chosen for
a variety of reasons (e.g., they could be easily shown, to
provide greater clarity, etc.).

References in the specification to “one embodiment”, “an
embodiment”, “an example embodiment”, etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. Rather, in particular
embodiments, “connected” may be used to indicate that two
or more elements are in direct physical or electrical contact
with each other. “Coupled” may mean that two or more ele-
ments are in direct physical or electrical contact. However,
“coupled” may also mean that two or more elements are notin
direct contact with each other, but yet still co-operate or
interact with each other.

In some cases, the operations of flow diagrams are
described with reference to the exemplary embodiments of
the other block diagrams. However, it should be understood
that the operations of the flow diagrams can be performed by
embodiments of the invention other than those discussed with
reference to these other block diagrams, and that the embodi-
ments of the invention discussed with reference to these other
block diagrams can perform operations different than those
discussed with reference to the flow diagrams.

US 9,424,050 B2

15

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
computers. Such computers store and communicate (inter-
nally and with other computers over a network) code and data
using machine-readable media, such as machine storage
media (e.g., magnetic disks; optical disks; random access
memory; read only memory; flash memory devices) and
machine communication media (e.g., electrical, optical,
acoustical or other form of propagated signals—such as car-
rier waves, infrared signals, digital signals, etc.). In addition,
such computers typically include a set of one or more proces-
sors coupled to one or more other components, such as a
storage device, a number of user input/output devices (e.g., a
keyboard and a display), and a network connection. The cou-
pling of the set of processors and other components is typi-
cally through one or more busses and bridges (also termed as
bus controllers). The storage device and network traffic
respectively represent one or more machine storage media
and machine communication media. Thus, the storage device
of'a given computer system typically stores code and data for
execution on the set of one or more processors of that com-
puter. Of course, one or more parts of an embodiment of the
invention may be implemented using different combinations
of software, firmware, and/or hardware.

Overview

According to one aspect of the invention, a producer is at
least a specific instance (or object) and a specific method,
such that if the producer is executed during run time, the
specific method is executed on the specific instance. Thus, a
given producer is instantiated from a given instance and a
given method associated with that instance. Like classes,
instances, and methods, producers are basic elements or con-
structs manipulated by the runtime. Thus, the instantiation of
aproducer is interpreted and tracked by the runtime, and thus
the runtime tracks the combination of instances and methods
represented by producers. In other words, a producer is a
runtime instantiatable construct that is tracked by the runtime,
that is executed by the runtime, and that includes at least an
instance and a method associated with that instance, such that
the runtimes execution of the producer results in the method
of the producer being executed on the instance of the pro-
ducer. Also, the method of a producer has associated with it a
producer dependency declaration that identifies, with a set of
zero or more producer dependencies, a set of zero or more
producers for the given producer. Specifically, producer
dependencies are declared for methods using producer
dependency declarations, the producer dependency declara-
tion for a given method may include zero or more producer
dependencies, and each producer dependency identifies a set
of zero or more producers. Thus, producer dependency dec-
larations and the producer dependencies they define are inter-
preted and tracked by the runtime, and thus the runtime tracks
the relationships between producers indicated by the pro-
ducer dependency declarations.

Where a given producer is dependent on a set of one or
more other producers, the runtime will ensure execution of
the set of other producers prior to the given producer. Thus,
the producer dependency declarations represent execution
relationships between producers, while producers represent
operations to be performed (methods) and instances. While in
some embodiments of the invention allow dependencies of
parent producers on child producers to be declared in the
producer dependency declaration associated with the method
of the parent producer (the producer dependency declaration
of the parent producer identifies any child producers—re-
ferred to herein as downwardly declared), other embodiments
of'the invention also allow dependencies to be declared in the

25

30

40

45

55

16

producer dependency declaration associated with the
method(s) of child producer(s) (the producer dependency
declaration of the child producer identifies one or more parent
producers—retferred to herein as upwardly declared).

In different embodiments of the invention a producer iden-
tifies additional things. For example, while in some embodi-
ments of the invention a producer is at least an instance and
method associated with that instance, in other embodiments
of'the invention a producer is a class, an instance of that class,
and a method associated with that instance (e.g., a producer
may directly include a class, instance, and method; a producer
may directly include an instance and a method, while indi-
rectly identifying a class of that instance through a reference
(e.g., areference in the instance)). While the invention may be
used in the context of code written in different programming
languages (e.g., object-oriented code written in a reflective
object-oriented language; object-oriented code written in a
reflective object-based language; code written in a proce-
dural, non-reflective object-oriented, non-reflective object-
based language and transformed into reflective object-ori-
ented language code), embodiments of the invention will be
described, by way of example and not limitation, with refer-
ence to reflective object-oriented programming languages
and with reference to producers that directly include classes,
instances and methods. Also, while in one embodiment of the
invention the method of a producer is an instance method (a
method that can use instance fields in addition to any inputs
received as arguments), alternative embodiments of the
invention may also or alternatively support the method of a
producer being a class method (methods that receive all
inputs as arguments and/or uses instance independent vari-
ables) (where the method ofa producer is an instance method,
the instance of that producer is an instance of a class; while
where the method of a producer is a class method, the instance
of that producer is a meta-class instance representing the
class).

FIG. 1A is a block diagram illustrating the relationship of
a producer dependency declaration for a method of'a class in
object oriented-source code to a producer that includes the
class, a given instance of that class, and a method of that class,
according to one embodiment of the invention. In FIG. 1A,
object-oriented source code 100 is shown including a class
102, which in turn includes a method 104, execution mode
settings 105, and a producer dependency declaration 106 for
the method 104. Of course, the class 102 would typically
include one or more fields (not shown) and additional meth-
ods (not shown). In addition, the object-oriented source code
100 would typically include additional classes.

During run time, an instance 108 of the class 102 is instan-
tiated. The instance 108 includes the data of the fields of the
class 102. In addition, a producer 110 is instantiated, where
the producer 110 identifies the class 102, the instance 108 of
the class 102 (which has associated with it the method 104 of
the class 102), and the method 104 of the class 102. The
producer dependency declaration 106 identifies to the runt-
ime a set of zero or more producers 112 (referred to as child
producers of the producer 110) that must be executed before
execution of the producer 110. In other words, the producer
110 depends on the set of zero or more producers 112. In
addition to or instead of consuming outputs of the set of
producer 112, the producer 110 may consume data of the
instance 108. In addition, the producer 110 provides at least
one output, which output may be internal to the instance 108
(and thus, modify the data of the instance 108) and/or may be
external; either way, the output of the producer 110 may be
consumed by a set or zero or more other producers 114
(referred to as parent producers of the producer 110)). As

US 9,424,050 B2

17

indicated previously, and described in more detail later
herein, the producer dependency declaration 106, in some
embodiments of the invention, may also identify to the runt-
ime zero or more of the producers 114.

It should be understood that the inputs and outputs of
producers are based on the inputs and outputs of the methods
on which those producers are based. As such, these input and
outputs may represent multiple parameters having a variety of
data structures.

The producer dependency declaration for a given method
identifies at run time the set of zero or more producers to be
instantiated and executed. By way of example, where a pro-
ducer dependency declaration (e.g., producer dependency
declaration 106) for a given method (e.g., method 104) iden-
tifies a producer dependency on a given producer (which
given producer identifies a first class, a first instance of that
class, and a first method of that first class) (e.g., one of the set
of producers 112), then the producer dependency declaration
of the given method identifies to the runtime that the first
instance is to be instantiated (if not already) and that the first
method is to be used to instantiate the given producer for the
first instance (in these examples, first does not mean location
or order).

In operation, when, during run time, a given set of one or
more producers are designated as being of interest and have
producer dependencies declared for them, the runtime: 1)
automatically generates (discovers, builds, and optionally
resolves) a set of one or more graphs, which may be multi-
level and may be of a variety of shapes (e.g., chain, tree), from
the given set of producers designated as being of interest
down to source producers based on the producer dependency
declarations 106; and 2) sequences execution of producers of
the set of graphs to generate the output(s) of the given set of
producers designated as being of interest. Thus, the runtime
uses the producer dependency declarations 106 to determine
what methods with what arguments to execute, on what
instances, and when for synchronization purposes.

In some embodiments, the runtime checks the execution
mode setting 105 to determine the execution mode of a pro-
ducer. Different execution modes may be supported in difter-
ent systems. Some examples of execution modes include
multithreading, multi-processing, and local execution.

Producer dependencies represent the sequencing of execu-
tion of producers to the runtime. However, in addition to
indicating the sequencing of execution, producer dependen-
cies may represent different input to output relationships in
different embodiments of the invention. For example, difter-
ent embodiments of the invention may support one or more of
argument producer dependencies, field producer dependen-
cies, and sequencing only producer dependencies (sequenc-
ing only producer dependencies are referred to herein with
the shorthand sequencing producer dependencies). While
each of argument producer dependencies, field producer
dependencies, and sequencing producer dependencies repre-
sent execution sequencing relationships between producers,
argument and field producer dependencies additionally rep-
resent data of which the runtime is aware. Specifically, an
argument producer dependency causes the runtime to map the
output of a child producer as an input parameter to a parent
producer, whereas a field producer dependency indicates use
of a field of an instance. Regardless of the input to output
relationship represented by a producer dependency, proper
use of producer dependencies ensures that the producers
accessing information are sequenced after the producers that
impact that information.

Sequencing dependencies may be used for a variety of
purposes, including ensuring the order of execution between

10

15

20

25

30

35

40

45

50

55

60

65

18

producers that modify data in a manner of which the runtime
is not aware and producers that consume that data (a child
producer may write its outputs in a way that requires the
method of the parent producer to include code to access that
output (e.g., a method that impacts the environment by affect-
ing an output that is not the regular producer output and, as
such, that is not detected by the runtime—such as a method
that sets a global variable, that sets a field in an instance which
is not the producer output, that impacts an external data
source, etc.)) Thus, a sequencing dependency reflects a
dependency of a parent producer on a child producer, but
requires outputs that need to be provided, if any, from one to
the other occur through the writing of code (e.g., code in the
method of the child producer to write an output to a given
mechanism (such as set a global variable, impact an external
data source, set a field of an instance which is not the producer
output, etc.) and code in the method of the parent producer to
read that output from the given mechanism). In this way,
sequencing dependencies allow the runtime to synchronize
execution of any parent producers that rely on an output that
the runtime cannot detect.

In one embodiment of the invention the producer depen-
dency declaration 106 for a given method identifies only
direct dependencies on producers (e.g., direct descendents
(children), in contrast with indirect descendents (grand-chil-
dren, great grand-children, etc.)). In such an embodiment,
each producer dependency declaration provides only a single
tier or layer of producers whose outputs may be used directly
by a producer instantiated from the given method; leaving
discovery/building/resolution of additional layers of the pro-
ducer graph(s) to the runtime’s processing of other producer
dependency declarations.

According to one embodiment of the invention, the depen-
dencies of producers identified by the producer dependency
declaration 106 are useful in implementing parallelization
and instrumentation of the application program including the
producers. To parallelize the application program, two or
more producers of the application program are executed sub-
stantially at about the same time in the same execution mode
or in different execution modes. To instrument the applica-
tion, metrics of the producers are acquired as the producers
are being executed. Details of parallelization and instrumen-
tation are further discussed below with reference to exem-
plary embodiments of the invention.

Exemplary Keys

A producer can be viewed as a set of multiple identifiers,
one identifier for each additional level of granularity specified
(class, instance, method, etc.). In addition, some embodi-
ments of the invention implement each identifier as a separate
key, while other embodiments have certain identifiers share a
key. By way of example, some embodiments of the invention
implement a producer as a class, instance, and method triplet
and implement keys, such that each part of the triplet is
identified by a separate key (a class key, instance key, and
method key) and the producer is identified by the combination
of the class key, instance key, and method key (the producer
key).

Embodiments of the invention that use keys may vary inthe
uniqueness of the keys used. For example, in one embodiment
of'the invention, each class key is unique, each instance key is
unique across all instances of all classes, and each method key
is unique across all methods of all classes. As another
example, in other embodiments of the invention, each class
has a unique key, each instance of a given class has a unique
key (across the class instances), and each method of a class
has a unique key (across the class methods); but instances of
different classes may have the same instance key, and meth-

US 9,424,050 B2

19

ods of different classes may have the same method key; this
later approach will be used in the remainder of the document
by way of example and not limitation. For example, assume a
first class includes methods and has a key for each of these
methods that is unique within the first class, then the instances
of this class (which will each have a unique key as to each
other) have the same method keys associated with them. As
another example, assume a different second class includes
methods (be some, all, or none the same as the methods of the
first class) that have the same method keys as those used for
the first class; as such, an instance of this different class may
have associated with it the same method keys as associated
with an instance of the first class.

The use of keys allow for a variety of features, including: 1)
the tracking of each entity identified by a producer’s identi-
fiers (e.g., the tracking of each class, instance, and method);
2) several parent producers (unaware of their mutual exist-
ence) to connect to the same child producer based on their
producer dependency declarations (which specity producer
dependencies using the producer keys); etc. In one embodi-
ment of the invention, the instance key is an instance of a class
(InstanceKey) holding two elements: an instance key nature
indicating if the key identifier is a reference to the instance or
another object (such as a string), and a key identifier which
can either be a reference to the instance, or another object
(such as a string). The storing of an instance reference in the
instance key spares the programmer from inventing a name to
identify these instances.

Exemplary Relationships

In the context of the above discussion regarding a producer
being viewed as a set of multiple identifiers (with one iden-
tifier for each additional level of granularity specified), in one
embodiment of the invention the various supported relation-
ships between a producer and its children and parents are
those in which at least one such identifier is different between
a producer and its set of zero or more parent producers and
one such identifier is different between a producer and each of
its set of zero or more child producers. By way of providing
some exemplary relationships, assume that a first producer is
instantiated, where the first producer is a first instance of a
first class and a first method of that first class, and assume that
the producer dependency declaration for that first method
identifies at run time a second producer as a child, then the
second producer may be: 1) the first instance of the first class
and a second method of that first class; 2) a second instance of
the first class and a second method of that first class; or 3) a
second instance of the first class and the first method of the
first class; or 4) an instance of a second class and a method of
that second class. In such case, the first producer is dependent
onthe second producer—thus, representing an input to output
relationship of the first producer on the second producer.
Various relationships and combinations of those relationships
are described below for one embodiment of the invention that
uses an object-oriented language and in which a producer
identifies at least a class, instance, and method.

FIGS. 1B-1D illustrate exemplary relationships between a
given producer, its set of parent producers, and its set of child
producers according to one embodiment of the invention.
FIGS. 1B-1D each show the following: 1) a class definition
102A including methods 104A-C and producer dependency
declarations 106 A-C for each of those methods, respectively;
2) a class definition 102B including methods 104D-E and
producer dependency declarations 106D-E for each of those
methods, respectively; 3) a class definition 102C including
method 104F and producer dependency declaration 106F for
that method; 4) an instance 108A of the class 102A; 5) a
producer 110A that identifies the class 102A, the instance

20

40

45

50

55

20

108 A, and the method 104A; and 6) a producer 112A.1 and a
producer 114A.1 respectively representing one of the set of
producers 112 and 114. Dashed lines with boxed letters on
them are used in FIGS. 1B-1D to illustrate the exemplary
relationships. Thus, the collection of dashed lines with a
boxed A on them represent one relationship. The relation-
ships in FIG. 1B are combinable with the relationships in FIG.
1C; as such, these combinations represent combinations of
relationships between parent producers 114A and child pro-
ducers 112A to producer 110A. Further, FIG. 1D illustrates
some additional exemplary combinations of relationships
between parent producers 114 A and child producers 112A to
producer 110A.

FIG. 1B illustrates exemplary relationships between the
producer 110A and the parent producer 114A.1 according to
one embodiment of the invention. FIG. 1B additionally
includes an instance 108B. The set of producers 114 is iden-
tified by other producer dependency declarations of different
method(s) of the same class, different instances of the same
class, and/or method(s) of a different class; and thus, each of
the set of producers 114 may be: 1) of the same instance as the
producer 110A (instance 108 A of class 102A) and a different
method of that instance (illustrated by the boxed A on the
dashed lines from the instance 108A to the producer 114A.1
and from the method 104B to the producer 114A.1); 2) of a
different instance of the class 102A and a different method of
that instance (illustrated by the boxed B on the dashed lines
from the class 102A to the instance 108B, from the instance
108B to the producer 114A.1, and from the method 104B to
the producer 114A.1); 3) of an instance of a different class and
a method of that instance (illustrated by the boxed C on the
dashed lines from the class 102B to the instance 108B, from
the instance 108B to the producer 114A.1, and from the
method 104D to the producer 114A.1); or 4) of a different
instance of class 102A (than instance 108A) and the same
method (method 104A) of that instance (e.g., with a contin-
gent dependency—described later herein) (illustrated by the
boxed D on the dashed lines from the class 102A to the
instance 108B, from the instance 108B to the producer
114A.1, and from the method 104 A to the producer 114A.1);
further, where there are multiple producers in the set of pro-
ducers 114, the producers 114 themselves may be part of the
same instance of the class 102A, different instances of the
class 102A, the same instance of a different class, different
instances of a different class, and/or a mixture of the above.

FIG. 1C illustrates exemplary relationships between the
producer 110A and the child producer 112A.1 according to
one embodiment of the invention. FIG. 1C additionally
includes an instance 108C. Each of the set of producers 112A
may be: 1) of the same instance as the producer 110A (in-
stance 108A of class 102A) and a different method of that
instance (illustrated by the boxed E on the dashed lines from
the instance 108A to the producer 112A.1 and from the
method 104C to the producer 112A.1); 2) of a different
instance of the class 102A and a different method of that
instance (illustrated by the boxed F on the dashed lines from
the class 102A to the instance 108C, from the instance 108C
to the producer 112A.1, and from the method 104C to the
producer 112A.1); 3) of an instance of a different class and a
method of that instance (illustrated by the boxed G on the
dashed lines from the class 102C to the instance 108C, from
the instance 108C to the producer 112A.1, and from the
method 104F to the producer 112A.1); or 4) of a different
instance of class 102A (than instance 108) and the same
method (method 104A) of that instance (e.g., with a contin-
gent dependency described later herein) (illustrated by the
boxed H on the dashed lines from the class 102A to the

US 9,424,050 B2

21

instance 108C, from the instance 108C to the producer
112A.1, and from the method 104 A to the producer 112A.1).
Thus, each of the set of producers 112A may be of the same
instance as the producer 110A, of a different instance of the
class 102A, or an instance of a different class; further, where
there are multiple producers in the set of producers 112A, the
producers 112A themselves may be part of the same instance
of the class 102A, different instances of the class 102A, the
same instance of a different class, different instances of a
different class, and/or a mixture of the above.

FIG. 1D illustrates some additional exemplary combina-
tions of relationships of parent producers 114 and child pro-
ducers 112 to producer 110A according to one embodiment
of the invention. FIG. 1D additionally includes the instance
108B and the instance 108C. The combinations of FIG. 1D
are shown in Table 1 below:

10

15

22

child producers of both the producer 110A and the producer
110C; 2) the producer dependency declaration 106B for
method 104B identifies at run time the child producer of
producer 110B; and 3) the producer dependency declaration
106C for method 104C identifies at run time the child pro-
ducer of producer 110D.

Exemplary Runtimes

FIG. 2 is a block diagram illustrating the reusability of a
runtime with producer graph oriented programming support
according to one embodiment of the invention. In FIG. 2,
multiple object-oriented application programs (object-ori-
ented application code with producer dependency declara-
tions 210A-I) are run by the same runtime with producer
graph oriented programming support 220.

FIG. 3A is a block diagram illustrating a runtime with
producer graph oriented programming support according to

TABLE 1

Boxed Dashed Lines For Parent Producer Dashed Lines For Child Producer 112A.1

Letter 114A.1 from from

I From instance 108A to producer From instance 108A to producer 112A.1
114A.1 and from method 104Bto and from method 104B to producer 112A.1
producer 114A.1

7 From instance 108A to producer From class 102A to instance 108C, from
114A.1 and from method 104Bto instance 108C to producer 112A.1, and
producer 114A.1 from method 104B to producer 112A.1

K From class 102A to instance 108B, From instance 108A to producer 112A.1
from instance 108B to producer and from method 104B to producer 112A.1
114A.1, and from method 104B to
producer 114A.1

L From class 102B to instance 108B, From class 102B to instance 108B, from
from instance 108B to producer instance 108B to producer 112A.1, and
114A.1, and from method 104Eto from method 104E to producer 112A.1
producer 114A.1

M From class 102B to instance 108B, From class 102B to instance 108C, from
from instance 108B to producer instance 108C to producer 112A.1, and
114A.1, and from method 104Eto from method 104E to producer 112A.1
producer 114A.1

N From class 102A to instance 108B, From class 102A to instance 108C, from
from instance 108B to producer instance 108C to producer 112A.1, and
114A.1, and from method 104A to from method 104A to producer 112A.1
producer 114A.1

(@] From class 102A to instance 108B, From class 102A to instance 108B, from
from instance 108B to producer instance 108B to producer 112A.1, and
114A.1, and from method 104A to from method 104A to producer 112A.1
producer 114A.1

P From instance 108A to producer From class 102A to instance 108C, from
114A.1 and from method 104Bto instance 108C to producer 112A.1, and
producer 114A.1 from method 104A to producer 112A.1

Q From class 102A to instance 108B, From class 102A to instance 108B, from
from instance 108B to producer instance 108B to producer 112A.1, and
114A.1, and from method 104A to from method 104B to producer 112A.1
producer 114A.1

R From class 102B to instance 108B, From class 102B to instance 108B, from

from instance 108B to producer
114A.1, and from method 104D to
producer 114A.1

instance 108B to producer 112A.1, and
from method 104E to producer 112A.1

FIG. 1E illustrates that different instances of the same class

can have producers based on the same and/or different meth-
ods according to one embodiment of the invention. FIG. 1E
shows: 1) the class definition 102A including methods
104A-C and producer dependency declarations 106 A-C for
each ofthose methods, respectively; 2) the instance 108 A and
the instance 108B being of class 102A; 3) a producer 110A is
the method 104A of the instance 108A of the class 102A; 4)
a producer 110B is the method 104B of the instance 108 A of
the class 102A; 5) a producer 110C is the method 104A of the
instance 108B of the class 102A; and 6) a producer 110D is
the method 104C of the instance 108B of the class 102A. In
addition, FIG. 1D shows that: 1) the producer dependency
declaration 106 A for method 104 A identifies at run time the

55

60

65

one embodiment of the invention. In FIG. 3A, a runtime with
producer graph oriented programming support 335 includes
an automated producer graph generation module 340 and a
producer graph execution module 345. In addition, the runt-
ime 335 is to execute object-oriented source code, and thus
includes additional modules not shown.

In addition, FIG. 3A shows producer dependency declara-
tions for methods in object-oriented source code 320, a cur-
rent set of one or more producers whose outputs are of interest
325 (also referred to here as the currently selected producers
of interest), and the outputs of source producers 330 (de-
scribed later herein). The automated producer graph genera-
tion module 340 receives the producer dependency declara-
tions 320 and the current set of producers of interest 325.

US 9,424,050 B2

23

The automated producer graph generation module 340
attempts to discover, based on the producer dependency dec-
larations, child producers with outputs that contribute directly
and indirectly to the input of the currently selected producers
of interest, and build a current graph of producers represent-
ing the input dependency of these producers on each other
from the currently selected producers of interest to those of
the discovered producers that are source producers. The pro-
ducer graphs(s) are stored in the producer graph(s) structure
380.

The producer graph execution module 345 receives the
current producer graph(s) from the automated producer graph
generation module 340 and the outputs of source producers
330, and executes the producers of the current producer
graph(s) to determine the current output of the currently
selected producers of interest. In some embodiments, the
producer graph execution module 345 includes a paralleliza-
tion module 3451, a multiprocessing module 3453, a multi-
threading module 3455, and a local execution module 3457.
The parallelization module 3451 may determine the execu-
tion mode of a producer and send the producer to one of the
multiprocessing module 3453, the multithreading module
3455, and the local execution module 3457 to be executed in
the execution mode determined Parallelization may be sup-
ported by an individual execution mode. For instance, parallel
execution of producers may be accomplished by the multi-
processing module 3453 using multiprocessing. Alterna-
tively, parallel execution of producers may be accomplished
by the multithreading module 3455 using multithreading.
Furthermore, parallelization may be supported by a combi-
nation of execution modes. In other words, producers may be
executed in parallel using different execution modes. For
instance, two producers may be executed in parallel by send-
ing one producer to the multithreading module 3455 and the
other producer to the local execution module 3457. It should
be appreciated that other combinations of execution modes
may be used to implement parallelization.

The producer graph execution module 345 caches the cur-
rent outputs of the producers in the producer graph structure
380 as illustrated by the producer output caching 384. The
caching of producer outputs of the producer graph during
execution allows for synchronization. For instance, the
appropriate time to execute a parent producer that is depen-
dent on multiple child producers is after all of the multiple
child producers have been executed; in other words, it would
be wasteful (and, in some cases, not possible) to execute the
parent producer each time one of its child producers com-
pleted execution. The caching of the producer outputs allows
for the execution of the parent producer to not only be post-
poned until all its child producers have been executed, it also
allows for a determination of the appropriate time for the
execution of the parent producer—when all of the child pro-
ducers have been executed and their outputs have been
cached. Thus, the runtime makes this synchronization deci-
sion for the programmer by checking the availability of the
needed outputs in the producer output caching 384; in other
words, such synchronization is automated (the programmer
need not include separate source code that determines the
appropriate time to execute a given method of an instance).
By way of another example, where several parent producers
are dependent on the same child producer as well as on other
different child producers, the appropriate time to execute each
of'the several parent producers is typically different; the runt-
ime automatically determines the appropriate time to execute
each of the several parent producers depending on the avail-
ability of the outputs of its set of child producers.

10

15

20

25

30

35

40

45

50

55

60

65

24

As will be described in more detail later herein, since some
parts of a producer graph may not be currently discoverable
due to dynamic producer dependencies, the automated pro-
ducer graph generation module 340 “attempts™ to discover
and build the entire producer graph, but may not initially be
able to complete the entire producer graph until some pro-
ducers are executed. As such, the producer graph execution
module 345 may invoke the automated producer graph gen-
eration module 340 with needed producer outputs during
execution of the current producer graph to complete any
unresolved remainders of the current producer graph (this is
illustrated in FIG. 3A by a dashed arrowed line from the
producer graph execution module 345 to the automated pro-
ducer graph generation module 340; a dashed arrowed line is
used because such support is optional)

FIG. 4A is a block diagram illustrating the discovery and
building of an exemplary producer graph according to one
embodiment of the invention. FIG. 4A shows that the current
set of producers of interest consists of producer 1. Based upon
producer 1 and its producer dependency declaration, pro-
ducer 2 and producer 3 are discovered. In other words, the
producer dependency declaration for producer 1 identifies
that the input to producer 1 requires execution of producer 2
and producer 3. As such, producer 1 is a dependent producer
(a producer that has one or more producer dependencies).
FIG. 4A also shows that while producer 3 is an independent
producer (a producer that has no producer dependencies, and
thus is a source producer), producer 2 is not. As a result, based
upon the producer dependency declaration of producer 2,
producer 4 and producer 5 are discovered. In FIG. 2A, pro-
ducer 4 and producer 5 are independent producers (and thus,
source producers).

FIG. 4B is a block diagram illustrating the initial execution
of the producer graph of FIG. 4A according to one embodi-
ment of the invention. In FIG. 4B, curved arrowed lines
illustrate the execution of one producer to generate an output
that is provided as the input to another producer. As shown in
FIG. 3A, the output of the source producers 330 are provided
to the producer graph execution module 345; in contrast, the
outputs of the dependent producers 1-2 are determined by
execution of those producers as shown in FIG. 4B. Thus, in
FIG. 4B, the following occurs: 1) the output of source pro-
ducer 4 and source producer 5 are provided to dependent
producer 2; 2) dependent producer 2 is executed; 3) the out-
puts of dependent producer 2 and source producer 3 are
provided to producer 1; and 4) producer 1 is executed and its
output is provided as the current output of interest. It is worth
noting that the producer graph of FIG. 4B is data driven in the
sense that data flows from one producer to another producer
up the graph.

In some embodiments, producer 4 and producer 5 may be
executed in parallel using different execution modes or a
single execution mode that supports parallelization (e.g.,
multiprocessing, multithreading, etc.) because producer 4
and producer 5 are independent of each other. However, since
producer 2 depends on producers 4 and 5 in the current
example, producer 2 may not be executed in parallel with
producers 4 and 5. Thus, the runtime may wait for producers
4 and 5 to be done before executing producer 2. As for pro-
ducer 3, since producer 3 is independent of producers 4 and 5,
producer 3 may be executed in parallel with producers 4 and
5. Alternatively, producer 3 may be executed in parallel with
producer 2 because producer 3 is also independent of pro-
ducer 2. In some embodiments, execution of producer 3 may
overlap in time with the execution of producers 4 and 5, as
well as the execution of producer 2, depending on how long it
takes to execute producers 3, 4, and 5.

US 9,424,050 B2

25

Thus, the producer dependency declarations 320 bound the
possible producer graphs that may be generated; while the
currently selected set of producers of interest 325 identify the
beginning node(s) of the current producer graph to be gener-
ated. From these two, the automated producer graph genera-
tion module 340 discovers and builds the producer graph. The
discovery and building is automated in that the automated
producer graph generation module 340 is not provided the
producer graph (e.g., it does not need to be manually identi-
fied by a programmer) or even a list of the producers that will
be in the producer graph. Rather, the automated producer
graph generation module 340 parses the producer depen-
dency declaration(s) of the current selected set of producers
ofinterest to discover their discovered producers, then parses
the producer dependency declarations of those discovered
producers, and so on down to the source producers (in some
embodiments of the invention described later herein, this may
be done with the assistance of the producer graph execution
module 345). In the case where the producer graph is a tree, a
currently selected producer of interest will typically be the
root node, and the producer dependency declarations will be
parsed until the leaf nodes (source producers) are discovered.

Overridden Producers and Incremental Execution

FIG. 3B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs
according to one embodiment of the invention. It should be
understood that incremental execution and overridden pro-
ducer outputs are each independent optional features, and
thus different embodiments of the invention may implement
one or both. Although not explicitly illustrated in FIG. 3B,
one should appreciate that the parallelization modules 3451,
the multiprocessing module 3453, the multithreading module
3455, and the local execution module 3457 in FIG. 3A may be
included in the producer graph execution module 370 in FIG.
3B to allow the producer graph execution module 370 in FIG.
3B to implement parallelization in the execution of produc-
ers.

In FIG. 3B, a runtime with producer graph oriented pro-
gramming support 360 includes an automated producer graph
generation module 365, a producer graph execution module
370, and an override producer output module 390. The runt-
ime 360 is to execute object-oriented source code, and thus
includes additional modules not shown.

In addition, FIG. 3B shows the producer dependency dec-
larations for methods in object-oriented source code 320, the
current set of one or more producers whose outputs are of
interest 325 (also referred to herein as the currently selected
producers of interest), and the output of source producers
350. The output of source producers 350 includes the outputs
of independent producers set in the source code 352 (e.g.,
constants, default values, etc.) and the currently overridden
producer outputs 354 (the outputs of the independent produc-
ers and/or dependent producers whose outputs are currently
overridden).

In some embodiments of the invention, the outputs of pro-
ducers may be explicitly overridden with a currently provided
value (i.e., rather than executing a producer to determine its
output value based on its current inputs, the output value for
the producer is explicitly provided). In addition to any inde-
pendent producers of a producer graph, the source producers
of'a producer graph include any currently overridden produc-
ers.

The override producer output module 390 receives the
overridden producer outputs 354 (which identify which pro-
ducers are being overridden and what output values they are
being overridden with). In one embodiment of the invention,

40

45

55

26

producers can be classified as property producers or method
producers. Property producers are those based on property
methods (e.g., get and set). Method producers are those based
on non-property methods. The override producer output mod-
ule 390 includes an override property producer output module
392 for overridden property producers and an override
method producer output module 394 for overridden method
producers. The override property producer output module
392 causes the overridden value to be stored in the producer
output caching 384 and in the data of the instance, whereas the
override method producer output module 394 causes the over-
ridden value to be stored in the producer output caching 384.
Depending on the embodiment of the invention, this causa-
tion may be direct or indirect. FIG. 3B illustrates an indirect
causation through the use of an override log 396 which col-
lects the output of the override producer output module 390
and which is consumed by the producer graph execution
module 370. For optimization purposes, the override log 396
allows for the delaying of overrides in order to collect mul-
tiple overrides for batch processing.

Similar to the automated producer graph generation mod-
ule 340, the automated producer graph generation module
365: 1) receives the producer dependency declarations 320
and the current set of producers of interest 325; and 2)
attempts to discover, based on the producer dependency dec-
larations, producers with outputs that contribute directly and
indirectly to the input of the currently selected producers of
interest, and build a current graph of producers representing
the input dependency of these producers on each other from
the currently selected producers of interest, through any dis-
covered non-source producers, to those of the discovered
producers that are source producers (independent producers
and currently overridden producers). The producer graphs(s)
are stored in the producer graph(s) structure 380.

Similar to the producer graph execution module 345, the
producer graph execution module 370 receives the current
producer graph from the automated graph module 365 and the
outputs of source producers 350, and executes the producers
of'the current producer graph to determine the current output
of the currently selected producers of interest. The producer
graph execution module 370 caches the current outputs of the
producers in the producer graph structure 380 as illustrated by
the producer output caching 384.

As previously described, the caching of producer outputs
during execution allows for synchronization (e.g., separate
source code need not be written to determine when producer
2 of FIG. 4B should be executed, but rather the runtime makes
this synchronization decision for the programmer by check-
ing the availability of the needed outputs in the producer
output caching 384; in other words, such synchronization is
automated). Furthermore, the caching of producer outputs
during execution may allow parallelization of producer
execution because the runtime may decide which producer is
ready for execution by checking the availability of the needed
outputs in the producer output caching 384. Producers that are
ready for execution may be executed in parallel. In other
words, parallelization may be automated as well. Thus, no
separate source code is needed to determine or to indicate
which producers should be executed in parallel. In addition,
this producer output caching 384 is used for incremental
execution. More specifically, after a producer graph has been
initially generated and executed, the overriding of a producer
in the current producer graph requires some level of reexecu-
tion. While some embodiments of the invention simply reex-
ecute the entire graph, alternative embodiments of the inven-
tion support incremental execution (reexecuting only those
parts of the producer graph that are affected by the override).

US 9,424,050 B2

27

Some exemplary embodiments that support incremental
execution use incremental execution marking 382 in the pro-
ducer graph(s) structure 380 to help determine which produc-
ers require reexecution. Thus, maintaining the producer graph
refers to modifying the links of the producer graph as neces-
sary across multiple executions, to keep them current (up to
date), whereas incremental execution refers to both maintain-
ing the producer graph(s) and using the current (up to date)
producer graph(s) to re-execute only those parts of the pro-
ducer graph(s) that are affected by an override.

Similar to FIG. 3A, there is a dashed arrowed line from the
producer graph execution module 370 to the automated pro-
ducer graph execution module 365 to represent optional sup-
port for dynamic dependencies. It should be noted that
dynamic dependencies may change during reexecution of a
producer graph.

FIG. 4C is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B according to one
embodiment of the invention. In FIG. 4C, the output of pro-
ducer 5 has been explicitly modified, but the outputs of pro-
ducer 3 and producer 4 have not. Based upon the tracking of
output to input dependencies in the producer graph and that
only the output of producer 5 has been explicitly modified, it
is determined that only producer 2 and producer 1 are affected
by this modification. As a result, the determination of an
updated output of producer 1 requires only the reexecution of
producer 2 and producer 1 with the new output of producer 5
and the prior outputs of producer 4 and producer 3. This
partial reexecution of the producer graph is illustrated in FIG.
4C by curved arrowed lines from producer 5 to producer 2 and
from producer 2 to producer 1, but not from producer 4 to
producer 2 or from producer 3 to producer 1. The lack of
curved arrowed lines from producer 4 to producer 2 and from
producer 3 to producer 1 are not to indicate that the outputs of
producer 3 and producer 4 are not needed, but rather that
producer 3 and producer 4 need not be reexecuted if their prior
output is available. (e.g., cached from the prior execution of
the producer graph).

The relatively simple example of FIG. 4C illustrates that
there can be a savings in processing resources as a result of
incremental execution. Such savings depend on a number of
factors (e.g., the number of producers that do not need to be
reexecuted, the amount of processing those producers would
have required, etc.). While one embodiment of the invention
is illustrated that performs incremental execution, alternative
embodiments may be implemented differently (e.g., an alter-
native embodiment may reexecute all producers responsive to
a modification).

FIG. 4D is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden according to one embodiment
of'the invention. In FIG. 4D, the output of producer 2 has been
explicitly modified, but the output of producer 3 has not.
Based upon the producer graph and that only the output of
producer 2 has been explicitly modified, it is determined that
only producer 1 is affected by this modification. As a result,
the determination of an updated output of producer 1 requires
only the reexecution of producer 1 with the overridden output
of producer 2 and the prior output of producer 3. This partial
reexecution of the producer graph is illustrated in FIG. 4D by
a curved arrowed line from producer 2 to producer 1, but not
from producer 4 and 5 to producer 2 or from producer 3 to
producer 1.

FIG. 4E is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden and independent source pro-
ducer 3 has been modified according to one embodiment of

10

25

30

40

45

55

28

the invention. Based upon the producer graph and that only
the outputs of producer 2 and producer 3 have been modified,
it is determined that only producer 1 is affected by this modi-
fication. As a result, the determination of an updated output of
producer 1 requires only the reexecution of producer 1 with
the overridden output of producer 2 and the modified output
of producer 3. This partial reexecution of the producer graph
is illustrated in FIG. 4E by a curved arrowed line from pro-
ducers 2 and 3 to producer 1, but not from producers 4 and 5
to producer 2.

While one embodiment of the invention that supports over-
riding producer outputs also supports unoverriding producer
outputs, alternative embodiments of the invention do not.
While one embodiment of the invention that supports unover-
riding producers leaves an overridden producer overridden
until it is specifically unoverridden, alternative embodiments
of the invention may be implemented differently (e.g.,
unoverriding an overridden producer when one of its progeny
is overridden).

In one embodiment of the invention the producer graph
oriented programming framework includes an external inter-
face used to interface with programs not written with pro-
ducer dependency declarations. This external framework
includes: 1) a caller part (referred to as the runtime client);
and 2) a called part (referred to as an external data source). If
aproducer reads data directly from an external data source, it
may just read the data when the producer is created, just read
the data when instructed to do so (manual refresh), or sub-
scribe to it. In the case of manual refresh and subscription,
changes in the external data source would result in the set
method of the producer being invoked and the modification of
the output of the producer (treated the same as an overridden
producer).

Producer Graph Building and Execution

Different embodiments of the invention may be imple-
mented to discover and build out a producer graph to different
extents (e.g., build the producer graph until all paths from the
root node end at independent producers (in which case, the
end nodes of a producer graph are independent producers,
with the possibility of any overridden producers being inter-
mediate nodes); build the producer graph out until each path
from the root node ends in an overridden producer or an
independent producer, whichever is reached first (in which
case, each end node of a producer graph is either an indepen-
dent producer or an overridden producer)).

“Execution start producers” refers to the producers of a
producer graph from which a given execution of the producer
graph begins. For an initial execution of a producer graph,
different embodiments may start from different producers
(e.g., in embodiments of the invention that build the producer
graph until all paths from the root node end at independent
producers, execution may start from the end nodes (which
would be the independent producers), from the source pro-
ducers (which would include the independent producer nodes
and any overridden producer nodes), from a subset of the
source producers consisting of the combination of any inde-
pendent producers with at least one path between them and
the root producer that does not include an overridden pro-
ducer and any overridden producers, or from a subset of the
source producers consisting of the combination of any over-
ridden producers without any descendents that are overridden
and any independent producers with at least one path between
them and the root producer that does not include an overrid-
den producer; in embodiments of the invention where the
producer graph under overridden producers is not built if and
until such a producer is un-overridden, execution may start

US 9,424,050 B2

29

from the end nodes (which may be independent producers
and/or overridden producers), etc).

For subsequent executions of a producer graph, different
embodiments may start from different producers (e.g., from
the independent producers of the producer graph (e.g., in
embodiments of the invention that do not support incremental
execution); from the source producers of the producer graph
(e.g., in embodiments of the invention that do not support
incremental execution); from a subset of the source producers
that consists of those source producers that have been over-
ridden and/or added since the last execution (e.g., in embodi-
ments of the invention that do support incremental execu-
tion); of the source producers that have been overridden and/
oradded since the last execution, from the combination of any
such overridden producers without any descendents that are
overridden and any such added producers with at least one
path between them and the root producer that does not include
an overridden producer (e.g., inembodiments of the invention
that do support incremental execution); etc).

With regard to the above concept of execution start pro-
ducers, the processing flow of execution of the producer
graph also differs between different embodiments. For
example, in one embodiment of the invention, the ancestry of
the execution start producers are determined and placed in a
collection, the execution start producers are executed, and the
collection is iteratively scanned for producers for whom all
dependencies have been executed—eventually the root nodes
are reached. As another example, in one embodiment of the
invention, the execution start producers are executed, the
parents of the execution start producers are identified, those
parents are executed, and their parents are identified and
executed, and so on. The later embodiment of the invention is
used below by way of example, and not limitation.

Exemplary Types of Dependencies

Exemplary Dynamic Producer Dependencies

A dynamic producer dependency is a producer dependency
that can change during run time. It should be understood that
the criteria for resolving the producer dependency is present
in the source code, and thus the producers to which the pro-
ducer dependency may be resolved are limited. With refer-
ence to FIG. 3A, the dashed arrowed line from the producer
graph execution module 345 to the automated producer graph
generation module 340 represents support for the execution
of one or more producers in the current producer graph that
are necessary to discover and build the entire current producer
graph. In other words, an embodiment of the invention that
supports dynamic producer dependencies may iterate
between the automated producer graph generation module
340 and the producer graph execution module 345 until the
entire producer graph is discovered, built, resolved, and
executed (that is, iterate between: 1) invoking the automated
producer graph generation module to discover and build those
parts of the current producer graph that can be resolved at that
time; and 2) invoking the producer graph execution module to
execute producers of the current producer graph). In this
sense, discovering refers to the accessing of the producer
dependency declarations and determining the producers they
identify; building refers to instantiating the producers and
adding them to the producer graph; and resolving refers to
determining currently unresolved dynamic producer depen-
dencies.

FIG. 5A is a block diagram illustrating the discovery and
building of an exemplary producer graph including an unre-
solved dependency according to one embodiment of the
invention. FIG. 5A shows the current set of producers of
interest consisting of producer 1. Based upon producer 1 and
its producer dependency declaration, producer 2 and pro-

20

25

30

35

40

45

50

30

ducer 3 are discovered. In other words, the dependency dec-
laration for producer 1 identifies that producer 1 requires as
inputs the output of producer 2 and producer 3. FIG. 5A also
shows that while producer 3 is an independent producer (and
thus, a source producer), producer 2 is not. As a result, based
upon the dependency declaration of producer 2, producer 4
and producer 5 are discovered. Further, FIG. 5A shows that
while producer 4 is an independent producer (and thus, a
source producer), producer 5 is not. As a result, based upon
the dependency declaration of producer 5, producer 6 and a
currently unresolved dependency are discovered. FIG. SA
also shows that the currently unresolved dependency may be
to producer 7A and/or producer 7B.

FIG. 5B is a block diagram illustrating the initial execution
of the producer graph of FIG. 5A and the resolution of the
unresolved dependency according to one embodiment of the
invention. FI1G. 5B illustrates the producer graph of FIG. SA
with curved arrowed lines showing execution of the produc-
ers and provision of their outputs to dependent parent pro-
ducers. In addition, FIG. 5B shows that the unresolved depen-
dency of producer 5 is resolved as a dependency on producer
7A, and that producer 7A is an independent producer. Note
that producer 7A may be executed by itself, or be executed in
parallel with producer 6, or be executed in parallel with pro-
ducer 4, be executed in parallel with producer 3, or be
executed in parallel with any combination of producers 3, 4,
and 6. Such parallel execution is allowed because producer
7A is independent of producers 3, 4, and 6.

FIG. 5C is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B according to one embodiment of
the invention. FIG. 5C illustrates the producer graph of FI1G.
5A with curved arrowed lines showing execution of the pro-
ducers and provision of their outputs to dependent parent
producers. In addition, FIG. 5C shows that the unresolved
dependency of producer 5 is resolved as a dependency on
producer 7B and that producer 7B is a dependent producer. As
a result, based upon the dependency declaration of producer
7B, producer 8 is discovered. Producer 8 is an independent
producer (and thus, is a source producer). Assuming that F1G.
5C represents the initial execution of the producer graph of
FIG. 5A, all of the curved arrowed lines in FIG. 5C would be
employed. However, assuming that FIG. 5C represents the
reexecution of the producer graph of FIG. 5B, the reexecution
results in the dynamic dependency being resolved differently
(a switch from producer 5 being dependent on producer 7A to
producer 7B). Further, if the reexecution is performed with-
out incremental execution, then all of the curved arrowed
lines in FIG. 5C would be employed; however, if incremental
execution was used, only the non-dashed curved arrowed
lines would be employed (producer 8 to producer 7B, pro-
ducer 7B to producer 5, producer 5 to producer 2, and pro-
ducer 2 to producer 1). It should also be understood that the
dynamic change in dependency illustrated in FIG. 5C is
exemplary, and thus any number of different situations could
arise (e.g., the dynamic change may never occur; producer 5
could have first been dependent on producer 7B and then
changed to producer 7A; producer 5 could have first been
dependent on producer 7B and no dynamic change ever
occurs; producer 5 could be found to be dependent on both
producer 7A and producer 7B as illustrated in FIG. 5D; etc.)
While different embodiments may resolve dynamic producer
dependencies in different ways, some examples are provided
later herein.

Thus, automated reexecution of a producer graph is not
limited to the producer being modified and its direct parent
being reexecuted; rather a change is automatically rippled

US 9,424,050 B2

31

through the producer graph by the runtime, affecting any
appropriate producers and dependencies, because the pro-
ducer graphs are maintained (and incremental execution is
used where supported). As such, changes cause any necessary
additional discovery, building, resolving, and executing.
Thus, the reexecution of a producer graph is automated in the
sense that a user/programmer need not determine which pro-
ducers of the producer graph are affected and possibly manu-
ally correct the graph.

Static Producer Dependencies

A static dependency is one that cannot change during run
time. Thus, in an embodiment that supports contingent and
subscription dynamic dependencies, a non-contingent, non-
subscription dependency is a static dependency. The exem-
plary producer graph of FIG. 4A illustrates a producer graph
of static dependencies.

Producer Graph Shapes

Since a producer in object-oriented programming lan-
guages is at least a class, an instance of that class, and a
method associated with that instance, a producer graph is
class, instance and method centric. As such, a producer graph
is a graph representing instances and methods associated with
those instances, and thus, producer graphs are at least
instance and method centric. In embodiments of the invention
in which a producer is at least a class, a method, and an
instance, producer graphs are at least class, method, and
instance centric.

It should be understood that a producer graph may take a
variety of different shapes (e.g., a single chain of producers, a
tree, etc.). The exemplary producer graph of FIG. 5B is a tree
with a root node of producer 1, from which there are two
branches—one to each of producer 2 and producer 3. Where
producer 3 is a leaf node, producer 2 has two branches extend-
ing from it—one to each of producer 4 and producer 5. Pro-
ducer 5 has two branches extending from it—one to each of
producer 6 and producer 7A. The exemplary producer graph
of FIG. 5B is said to be multilevel, with level 1 including the
root node producer 1, with level 2 including producer 2 and
producer 3, with level 3 including producer 4 and producer 5,
with level 4 including producer 6 and producer 7A (in FIG.
5C, level 4 includes producer 7B, and level 5 includes pro-
ducer 8). In some embodiments, parallelization may be
implemented by executing producers on each level in parallel.
Execution of producers may begin with the producers in the
lowest level, such as level 5 in FIG. 5C, and then moves up
level-by-level. Before start executing producers onalevel, the
runtime may wait until all producers on a previous lower level
are ready, i.e., the outputs of the producers on the previous
lower level have been returned. When considering the branch
from producer 1 with producer 2, the first producer of the
branch is producer 2 and the last producers of the branch are
producer 4, producer 6, and producer 7A in FIG. 5B.

While FIG. 5B illustrates a producer graph in which the
current set of producers of interest includes a single producer,
embodiments of the invention that support more than one
current producer of interest would discover and build pro-
ducer graphs for each. It should be understood that where
there are simultaneously multiple producers of interest, the
resulting producer graphs may be independent or may inter-
sect. Where producer graphs intersect, embodiments of the
invention may be implemented to: 1) duplicate producers to
maintain separate producer graphs; or 2) avoid such duplica-
tion and maintain intersecting producer graphs. It should also
be understood that such intersecting producer graphs may
include a producer graph that is a subset of another producer
graph. For instance, if producer 5 was included with producer
1 in the current set of producers of interest, then there would

10

20

25

40

45

55

32

be a first producer graph with a root node of producer 5 and a
second producer graph with a root node of producer 1, where
the second producer graph includes the first producer graph.
If, for instance, producer 7B was included with producer 1
and producer 5 in the current set of producers of interest, there
would be a third producer graph, separate from the first and
second producer graph, with a root node of producer 7B in
FIG. 5B. Further, if the dynamic dependency of producer 5
changed from producer 7A to producer 7B (FIG. 5C), then the
change would result in the second producer graph and the
third producer graph remaining (but not the first), with the
third producer graph becoming a subset of the second pro-
ducer graph remaining, and the second producer graph
becoming a subset of the first producer graph. As previously
stated, while embodiments of the invention may store and
manipulate the producer graph(s) as a collection of producers
that are linked to each other to form graph(s) (as opposed to a
collection of graphs) to facilitate merging and splitting of
producer graph(s). By way of example and not limitation,
embodiments of the invention which store and manipulate the
producer graph(s) as a collection of producers are described
herein.

Exemplary Execution Flow

FIG. 6 is a flow diagram of a logical execution flow of a
runtime client and its relationship to a runtime with producer
graph oriented programming support according to one
embodiment of the invention. In FIG. 6, dashed dividing line
600 separates the logical execution flow of a runtime client
610 from the runtime with producer graph oriented program-
ming support 640.

The logical execution flow of the runtime client 610
includes blocks 615, 620, 625, and 630, while the runtime
with producer graph oriented support 640 includes blocks
645, 650, 660, and optionally 655. A solid arrowed line rep-
resents a direct causal relationship from block 630 to block
660. In contrast, dotted arrowed lines illustrate a causal rela-
tionship from blocks 615 and 625 in the logical execution
flow of the runtime client 610 to blocks 645 and 650 in the
runtime with producer graph oriented support 640, respec-
tively; depending on the embodiment of the invention, this
causal relationship may be direct or indirect. For example,
FIG. 6 illustrates an optional indirect causation through the
use of a command log 665 in a dashed oval on the runtime
with producer graph oriented support 640 side of the dashed
line 600. The command log 665 collects commands resulting
from blocks 615 and 625 of the logical execution flow of the
runtime client 610; and the command log 655 is consumed,
responsive to block 630, by processing block 660. Thus, the
command log 665 allows for the delaying of commands in
order to collect multiple ones together and batch process them
for optimization purposes. Thus, the command log 665 is
similar to the override log 396 of FIG. 3B, and would actually
include the override log 396 in some embodiments of the
invention.

In block 615, the set of one or more producers of interest
are determined as the current set of producers of interest and
control passes to block 620. Responsive to the causal rela-
tionship between block 615 and block 645, block 645 shows
that the current set of producers of interest are instantiated and
that an attempt is made to discover, build, and resolve (if
dynamic dependencies are supported and one or more are
discovered in the producer graph) the producer graph(s) for
each, including instantiating any instances and producers
thereof as necessary, based on the producer dependency dec-
larations in the runtime client 610. With reference to FIGS.
3 A and 3B, the automated producer graph generation module
340 and 365 are invoked, respectively.

US 9,424,050 B2

33

In block 620, it is determined if there are any producer
output overrides. If so, control passes to block 625; otherwise,
control passes to block 630.

In block 625, one or more producer output overrides are
received for a set of one or more producers and control passes
to block 630. Responsive to the causal relationship between
block 625 and block 650, block 650 shows that the current set
of'overridden producers are instantiated (if not already instan-
tiated in block 645), their outputs are modified, and they are
tracked. An overridden producer may have already been
instantiated because it was already discovered to be part of the
producer graph(s) in block 645. However, an overridden pro-
ducer may not already be discovered in block 645 because of
an unresolved dynamic dependency. As such, this overridden
producer is instantiated and overridden with the expectation
that it may be added to the producer graph(s) when dynamic
dependencies are resolved. Also, as previously indicated, the
override log 396 of FIG. 3B, if implemented, exists between
block 625 and block 650 and is part of the command log 665.
Further, the set of overridden producers is tracked in some
embodiments of the invention that support incremental
execution. While in embodiments of the invention that sup-
port the override log 396/command log 665 the tracking is
part ofthe log, in alternative embodiments of the invention the
tracking is separately performed in block 650 with a different
mechanism.

In block 630, the producer graph execution module is
invoked and control optionally returns to block 615 and/or
block 625. Responsive to the causal relationship between
block 630 and block 660, block 660 shows that the current
producer graph(s) are walked and any producers that require
execution are executed based on the tracking. Various tech-
niques have been previously discussed for executing the pro-
ducers of the producer graph and are applicable here. With
reference to FIGS. 3A and 3B, the producer graph execution
module 345 and 370 are invoked, respectively. In addition, in
embodiments of the invention in which the command log 665
is implemented, the causal relationship includes consuming
the command log 665 and performing the processing blocks
645 and 650 prior to block 660. Further, in embodiments of
the invention that support the possibility of unresolved depen-
dencies, control flows from block 660 to block 655 when
necessary.

In block 655, an attempt is made to resolve the unresolved
dependencies and discover and build the remainder of the
producer graph(s), including instantiating any instances and
producers thereof. From block 655, control flows back to
block 660.

Exemplary Forms of Producer Dependency Declarations

FIGS. 7A-F illustrates some exemplary forms for producer
dependency declarations according to embodiments of the
invention. While FIGS. 7A-F illustrate embodiments that
support argument, field, and sequencing dependencies, it
should be understood that different embodiments may sup-
port only one or two of the three dependency forms. In the
embodiments of the invention shown in FIGS. 7A-F, a pro-
ducer dependency declaration is made up of a producer
dependency declaration statement, and optionally explicit
producer dependency declaration code. A non-shortcut
declared producer dependency is one in which explicit pro-
ducer dependency declaration code is used, whereas a short-
cut declared producer dependency is one in which no explicit
producer dependency declaration code is used (rather, the
runtime does not use producer dependency declaration code
and/or implements it on the fly based on information in the
producer dependency declaration statement).

10

15

20

25

30

35

40

45

50

55

60

65

34

Different embodiments of the invention may use different
syntaxes for declaring producer dependencies. For example,
different embodiments of the invention may include different
syntaxes for use in producer dependency declaration state-
ments that strongly constrain, weakly constrain, and/or do not
constrain the type of producer dependency that may be cre-
ated. A strongly constrained producer dependency is one for
which a syntax is used in the producer dependency declara-
tion statement that substantially limits the type of producer
dependency that may be created; A weakly constrained pro-
ducer dependency is one for which a syntax is used in the
producer dependency declaration statement that is less limit-
ing of the type of producer dependency that may be created;
and an unconstrained producer dependency is one for which
a syntax is used in the producer dependency declaration state-
ment that does not limit the type of producer dependency that
may be created.

By way of example, and not limitation, embodiments of the
invention described below that include the following: 1) a
syntax for a strongly constrained producer dependency for
arguments (ArgumentDependency=strongly constrained
downwardly declared argument [static or dynamic, and if
dynamic, contingent and/or absorbing subscription] depen-
dency); 2) asyntax for astrongly constrained producer depen-
dency for fields (FieldDependency=Strongly constrained
downwardly declared field [static or dynamic, and if
dynamic, contingent and/or absorbing subscription] depen-
dency); 3) asyntax for astrongly constrained producer depen-
dency for sequencing dependencies
(SequencingDependency=Strongly constrained downwardly
declared sequencing [static or dynamic, and if dynamic, con-
tingent and/or sticky subscription] dependency); 4) a syntax
for a weakly constrained upwardly declared producer depen-
dency for argument, field, or sequencing dependencies
(UpwardDependency=Weakly =~ constrained upwardly
declared field, argument, or sequencing [static or dynamic,
and if dynamic, contingent| dependency); and 5) a syntax for
a weakly constrained producer dependency
(WeaklyConstrainedDependency=either a) downwardly
declared sequencing only [static or dynamic, and if dynamic,
contingent and/or sticky subscription] dependency; or b)
upwardly declared [argument, field, or sequencing] [static or
dynamic, and if dynamic, contingent] dependency). It should
be understood that while some embodiments of the invention
support a syntax for the producer dependency declaration
statement that distinguishes downwardly declared argument
dependencies, downwardly declared field dependencies,
upwardly declared dependencies (that can return upwardly
declared argument, field, or sequencing dependencies), and
weakly constrained dependencies (that can return down-
wardly declared sequencing dependencies, upwardly
declared argument, field, or sequencing dependencies), alter-
native embodiments of the invention may adopt a different
syntax (e.g., have a syntax that has all dependencies be uncon-
strained dependencies with dependency determination pro-
ducers that can return any supported dependencies (down-
wardly and upwardly declared argument, field, and
sequencing dependencies); have a syntax distinguish all sup-
ported dependencies; have a syntax that distinguishes down-
wardly and upwardly declared argument and field dependen-
cies and that distinguishes a weakly constrained dependency
that can only return upwardly and downwardly declared
sequencing dependencies; a syntax that distinguishes down-
wardly declared argument and field dependencies and that
distinguishes upwardly declared dependencies that can return
only upwardly declared sequencing dependencies; a syntax
that distinguishes downwardly declared argument, field, and

US 9,424,050 B2

35

sequencing dependencies (sticky subscriptions and upwardly
declared dependencies are not supported); etc).

It should be understood that the syntax of the producer
dependency declaration statement does not necessarily
equate to the producer dependency (e.g., the link) created in
the producer graph (e.g., ArgumentDependency creates an
argument dependency; but an UpwardDependency may cre-
ate an argument, field, or sequencing dependency). As such,
where appropriate for understanding, a space between a
qualifier (e.g., argument, field, or sequencing) and the word
“dependency” is used to refer to the dependency created by
the runtime, while lack ofa space is used to refer to the syntax.

FIG. 7A illustrates pseudo code of a producer dependency
declaration for a method using shortcut declared dependen-
cies according to one embodiment of the invention; while
FIG. 7B is ablock diagram of exemplary producers according
to one embodiment of the invention. FIG. 7A shows: 1) a
producer dependency declaration statement 705 including
ArgumentDependencies 1-N, FieldDependencies 1-M,
SequencingDependencies 1-L, UpwardDependencies 1-P,
and WeaklyConstrainedDependencies 1-Q); and 2) a method
alpha 710 having arguments 1-N from the producer depen-
dency declaration statement 705. In one embodiment of the
invention, the arguments of a producer dependency declara-
tion statement are numbered to provide an argument 1D for
each for tracking purposes. FIG. 7B shows a producer 720
having child dependencies to the following: 1) producer 725
for argument ID 1; 2) producer 730 for argument 1D N; 3)
producers 740-745 for field dependencies 1-M; 4) producers
746-747 for SequencingDependencies 1-L; and 5) producer
748-749 for UpwardDependencies 1-P (note, WeaklyCon-
strainedDependencies 1.Q are not shown, but will be
described in greater detail with reference to FIG. 7G). Thus,
the arguments of the producer dependency declaration state-
ment 705 correspond to the arguments of the method alpha
710, and the argument IDs of the arguments in the producer
dependency declaration statement 705 are tracked with
regard to the child producers they identify.

FIG. 7C illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency, and illustrates a block diagram of exemplary
producers according to one embodiment of the invention.
FIG. 7C shows the producer dependency declaration state-
ment 705 and the method alpha 710 of FIG. 7A, as well as the
producers 720 and 725 from FIG. 7B. In addition, FIG. 7C
includes producer dependency declaration code 715 associ-
ated with Argument Dependency 1. During run time, the
runtime accesses and executes the producer dependency dec-
laration code 715 responsive to Argument Dependency 1 of
the producer dependency declaration statement 705. Execu-
tion of the producer dependency declaration code 715 returns
the producer 725 as the producer dependency for Argument
Dependency 1. Thus, FIG. 7C illustrates embodiments of the
invention in which producer dependency declaration code
715 may be part of a method (other than method alpha 710),
but is not part of a producer.

FIG. 7D illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency according to one embodiment of the invention;
while FIG. 7E is a block diagram of exemplary producers
according to one embodiment of the invention. FIG. 7D
shows the producer dependency declaration statement 705
and the method alpha 710 of FIG. 7A, while FIG. 7E shows
the producers 720 and 725 from FIG. 7B. In addition, FIG. 7D
includes: 1) a producer dependency declaration statement
750; and 2) a method beta 755 including producer depen-
dency declaration code 760. FIG. 7D also shows that argu-

20

25

40

45

36

ment dependency 1 of the producer dependency declaration
statement 705 identifies a producer (shown in FIG. 7E as
producer 765) based on the method beta 755 that will return
the dependency for argument dependency 1. During run time,
the runtime, responsive to argument dependency 1 of the
producer dependency declaration statement 705, executes the
producer 765 to return identification that the producer depen-
dency for argument dependency 1 is producer 725. As such,
producer 765 is referred to as a dependency determination
producer (its output is producer dependency—and thus, is
returned using a class/instance that is monitored for special
treatment (manipulation of the producer graph(s)) by the
runtime with producer graph oriented programming support),
whereas producer 725 is referred to as a standard producer (its
output, if any, is not directly processed by the runtime to
manipulate a producer graph; but its output, if any, may be
consumed by a parent producer (be it a dependency determi-
nation producer or another standard producer) and/or pro-
vided as the output of the producer graph (if the standard
producer is a producer of interest, and thus a root node).

Thus, FIGS. 7D-E illustrate embodiments of the invention
in which producer dependency declaration code 715 is part of
another producer—referred to as a dependency determination
producer. While in FIGS. 7D-E the object-oriented source
code includes explicit producer dependency declaration code
in methods from which dependency determination producers
are instantiated at run time by the runtime for non-shortcut
declared dependencies, alternative embodiments of the
invention additionally or instead implement the runtime to
include generic producer dependency declaration code that it
invokes as one or more generic dependency determination
producers on the fly for shortcut declared dependencies. Also,
while FIGS. 7C-E are illustrated with reference to Argument-
Dependencies, the techniques illustrated are applicable to the
other types of downwardly declared dependencies. Further,
FIGS. 7F-G illustrate the use of a dependency determination
producer for an UpwardDependency and a WeaklyCon-
strainedDependency.

FIG. 7F is a block diagram of an exemplary dependency
through use of an UpwardDependency with a dependency
determination producer according to one embodiment of the
invention. FIG. 7F shows the producer 720 having sequenc-
ing producer dependency to a dependency determination pro-
ducer 772. The dependency determination producer may
return a non-subscription upwardly declared argument, field,
or sequencing dependency of the parent producer 748 on the
producer 720. Further, such a dependency determination pro-
ducer may implement a dynamic dependency (e.g., a contin-
gent dependency that selects between the above depending on
data values, including between different argument IDs, as
described later herein). While some embodiments of the
invention support all of these possibilities, alternative
embodiments of the invention support only a subset (e.g.,
only non-subscription upwardly declared sequencing depen-
dencies).

FIG. 7G is a block diagram of possible exemplary depen-
dencies through use of a WeaklyConstrainedDependency
with a dependency determination producer according to one
embodiment of the invention. FIG. 7G shows the producer
720 having sequencing producer dependency to a depen-
dency determination producer 775. In some embodiments of
the invention, the dependency determination producer may
return any of the following: 1) a non-subscription down-
wardly declared sequencing dependency on a child producer
780; 2) a non-subscription upwardly declared argument,
field, or sequencing dependency of a parent producer 785 on
the producer 720; and 3) a sticky subscription (described later

US 9,424,050 B2

37

herein). Further, such a dependency determination producer
may implement a dynamic dependency (e.g., a contingent
dependency that selects between the above depending on data
values, including between different argument IDs, as
described later herein). While some embodiments of the
invention support all of these possibilities, alternative
embodiments of the invention support only a subset (e.g.,
only non-subscription upwardly declared sequencing depen-
dencies).

As previously indicated, sequencing dependencies may be
used for a variety of purposes, including ensuring the order of
execution between producers that modify data in a manner of
which the runtime is not aware and producers that consume
that data (a child producer may write its outputs in a way that
requires the method of the parent producer to include code to
access that output (e.g., a method that impacts the environ-
ment by affecting an output that is not the regular producer
output and, as such, that is not detected by the runtime—such
as a method that sets a global variable, that sets a field in an
instance which is not the producer output, that impacts an
external data source, etc.)), etc. Affecting sources (such as
global variables or external data sources) that the runtime is
not aware of and reading from these sources is a feature that
should be avoided in producers where parallelization capa-
bilities are required.

Different embodiments may support one or more ways for
declaring producer dependencies with respect to property
producers. Specifically, in some embodiments of the inven-
tion, producers that read a field should be dependent on the
get property producer, while the get property producer should
be dependent on any producers that set the field for which that
get property method is responsible. One technique of han-
dling this situation that may be used in embodiments of the
invention that support sequencing producer dependencies is
to provide, for a get property method, a producer dependency
declaration statement that creates sequencing producer
dependencies on every method that sets the field for which
that get property method is responsible (e.g., with respect to
FIG. 7G, where the producer 780 is a producer that sets a field
and the producer 720 is the get property producer responsible
for that field, the dependency determination producer 775
would be written to return a downwardly declared sequencing
dependency of the producer 720 on the producer 780). A
second technique of handling this situation that may be used
in embodiments of the invention that support both sequencing
producer dependencies and upwardly declared producer
dependencies is to include, in the producer dependency dec-
laration statement/code for any method that sets a field, an
upwardly declared sequencing producer dependency (e.g.,
using an UpwardDependency or WeaklyConstrainedDepen-
dency) on the get method responsible for that field (e.g., with
respect to FIG. 7G, where the producer 720 is a producer that
sets a field and the producer 785 is the get property producer
responsible for that field, the dependency determination pro-
ducer 775 would written to return an upwardly declared
sequencing dependency of the parent producer 785 on the
producer 720). This second technique allows the programmer
of the method that sets the field to be responsible for provid-
ing a producer dependency to the appropriate get method, as
opposed to requiring that programmer to go to the get method
and modify its producer dependency declaration statement/
code.

When using sequencing dependencies, when a given pro-
ducer relies on a given variable, that variable should not be
modified by more than one of that producer’s descendant
producers in a given execution of the producer graph(s) (It
should be noted that through contingent dependencies (de-

20

25

40

45

50

38

scribed later herein), different descendant producers may
modify that variable during different executions of the current
producer graph(s)). For example, a get property producer
should only depend on one other producer that sets the filed
for which the get property producer is responsible in a given
execution of the current producer graph(s).

It should be understood that different embodiments of the
invention may implement one or more of the embodiments of
the invention shown in FIGS. 7A-F. For example, one
embodiment of the invention supports shortcut and non-
shortcut declared dependencies, both using dependency
determination producers; specifically, in this embodiment of
the invention: 1) the object-oriented source code includes
explicit producer dependency declaration code in methods
from which dependency determination producers are instan-
tiated at run time by the runtime for non-shortcut declared
dependencies; 2) the runtime includes generic producer
dependency declaration code that it invokes as one or more
generic dependency determination producers on the fly for
shortcut declared, contingent dependencies (describer later
herein); and 3) the runtime includes support to directly link
shortcut declared, non-contingent producer dependencies
(describer later herein).

As another example, one embodiment of the invention
supports non-shortcut and shortcut producer dependencies
using dependency determination producers; specifically, in
this embodiment of the invention: 1) the object-oriented
source code includes explicit producer dependency declara-
tion code in methods from which dependency determination
producer are instantiated at run time by the runtime for non-
shortcut declared dependencies; and 2) the runtime includes
generic dependency determination code that it invokes as one
or more generic dependency determination producers on the
fly for shortcut declared dependencies (regardless of type).
This later embodiment allows for consistent treatment of
producer dependencies, and thus, simplifies the runtime.

In addition, while in one embodiment of the invention the
producer dependency declaration statement for a method is
located just above that method in the object-oriented source
code, in alternative embodiments of the invention it is located
elsewhere (e.g., the producer dependency declaration state-
ments for all the methods for a class are grouped together
within the class, the producer dependency declaration state-
ments for all the methods in all of the classes are grouped
together as a separate data table, etc.). Also, while in one
embodiment of the invention producer dependency declara-
tion code is separate from the producer dependency declara-
tion statements, in alternative embodiments of the invention
they are combined (e.g., the producer dependency declaration
code is within the parentheses of the producer dependency
declaration statement, the producer dependency declaration
code is placed directly beneath the producer dependency
declaration statement and is treated by the runtime as a single
unit, etc.).

FIGS. TH-I illustrate the distinction between different sub-
graphs that may exist in a producer graph due to dependency
determination producers. FIG. 7H illustrates exemplary pro-
ducer graphs of standard producers according to one embodi-
ment of the invention. Specifically, FIG. 7H shows a producer
graph with root node 51, a producer graph with root node S5,
and a producer graph with root node S11. The standard pro-
ducer 51 has as children standard producers S2, S3, and S4;
standard producers S2 and S3 have as children standard pro-
ducers S7 and S8; standard producer S5 has as children stan-
dard producers S4 and S6; and standard producer S11 has as
children standard producers S6 and S10. The exemplary pro-
ducer graphs of FIG. 7H may be discovered, built, and

US 9,424,050 B2

39

revolved using any number of producer dependencies and
dependency determination producers. FIG. 71 illustrates one
example of producer dependencies and dependency determi-
nation producers for discovering, resolving, and building the
producer graph of FIG. 7H. Specifically, FIG. 71 shows the
graphs of FIG. 7H being subgraphs of a larger set of producer
graphs. In other words, the producer graphs of FIG. 71 include
the graphs of FIG. 7H (referred to as the “target subgraphs”
and illustrated using solid arrowed lines and solid ovals) and
graphs that assist in the discover, resolution, and building of
the target subgraphs (referred to as “decision subgraphs and
illustrated used dashed arrowed lines and dashed ovals). The
decision subgraphs in FIG. 7H include dependency determi-
nation producers (DDPs) 1-11 and standard producers S9-10.
In FIG. 7H, S1 is shown as being dependent on DDPs 1-3,
which respectively return downwardly declared producer
dependencies of S1 on S2, S3, and S4; S4 is shown as being
dependent on DDP4, which returns an upwardly declared
producer dependency of S5 on S4; S5 is shown as being
dependent on DDP5, which returns a downwardly declared
producer dependency of S5 on S6; S3 is shown as being
dependent on DDP6, which in turn is dependent on DDP8,
which returns a downwardly declared producer dependency
of DDP6 on S9 and S10, which causes DDP6 to return a
downwardly declared dependency of S3 on S7; S3 is shown as
being dependent on DDP7, which returns a downwardly
declared producer dependency of S3 on S8; S8 is shown as
being dependent on DDP9, which returns a sticky subscrip-
tion for which S6 is a trigger producer and S11 is the created
parent (thus, the producer dependency of S11 on S6); S2 is
shown as being dependent on DDP10, which returns a col-
lection of downwardly declared producer dependency of S2
on S7 and S8; and S11 is shown as being dependent on
DDP11, which returns a downwardly declared producer
dependency of S11 on S10. It should be understood that a
standard producer may be both part of a target subgraph and
a decision subgraph (e.g., see S10). It is worth noting that the
target subgraphs are data driven in the sense that data flows
from one standard producer to another standard producer up
the graph.

Exemplary Programming and Execution Framework

FIG. 8A is a block diagram illustrating a first exemplary
framework within which applications are provided to end
users according to one embodiment of the invention. The
framework shown in FIG. 8A includes three basic divisions.
The first division includes the creation of the runtime with
producer graph oriented programming support 810. This first
division is performed by programmers with highly advanced
programming skills. When working in this division, program-
mers are referred to as runtime programmers. When creating
a runtime with producer graph oriented programming sup-
port, the runtime programmers include support for producer
graphs, as well as support for executing the various types of
commands used in transformation code, instantiation code,
and data preparation code.

The second division includes the creation of object-ori-
ented application source code 820 to be executed by the
runtime. The object-oriented application source code 820
includes two basic divisions: 1) class definitions that include
the business logic expressed in methods with producer depen-
dency declarations 822 (this may optionally include other
functionality, such as a graphical user interface—in which
case, the graphical user interface is written using producers
and producer dependency declarations); and 2) class defini-
tions that include client code expressed in methods 824,
including instantiation code (class, instances, and producer(s)
of interest, to cause generation of the producer graph(s))

10

15

20

25

30

35

40

45

50

55

60

65

40

824 A, data preparation code 824B (e.g., set commands, such
as set commands that trigger the overriding of producer out-
puts), global execute commands 824C to cause execution of
the producer graph(s) (e.g., execute and get commands), and
any required graphical user interface 824D (not included in
822). The producer dependency declarations are used to
define the ties between producers during the definition of the
classes that include the business logic, rather than after
instances of those classes are created. The object-oriented
source code 820 is hard coded class, instance, and methods
that are compiled and executed.

While in one embodiment of the invention a global execute
command is implemented, execution of which causes the
attempted execution of all producer graph(s) currently in the
producer graph(s) structure 380, alternative embodiments of
the invention alternatively or also implement a graph specific
execute command that requires identification of a given graph
of the current producer graph(s) that is to be executed. Fur-
ther, the global execute command may be explicit (e.g., set,
set, set, execute, get, get) or implicit depending on the imple-
mentation of the runtime. For example, an implicit global
execute command could be: 1) triggered by the first get com-
mand on a producer of interest (e.g., set, set, set, get (implicit
execute), get); 2) trigger by each data manipulation (set (im-
plicit execute), set (implicit execute), set (implicit execute),
get, get); etc.

The second division is again performed by programmers
with advanced programming skills, as well as an understand-
ing of the business objectives of the application. When work-
ing in this division, programmers are referred to as applica-
tion programmers. As part of this, if the application requires
a graphical user interface, the application programmers also
design and code the graphical user interface for the specific
application; and thus are also referred to as application
designers.

The third division includes the use of application programs
being run by the runtime. The third division is performed by
end users that need not have any programming skills. The
application program may be distributed in a variety of ways
(e.g., as source code; a transformation of source code, such as
byte code; as binary, etc.). In addition, the application pro-
gram may be distributed for stand alone use 830 (in which
case, the entire application program (and runtime if not
already present) is provided to a computer system) and/or
client/server use. In one embodiment of the invention, a cli-
ent/server distribution includes distributing the class defini-
tions that include the business logic expressed in methods
with producer dependency declarations 822 (and runtime if
not already present) for server use 832 and the class defini-
tions that include client code expressed in methods 824 (and
runtime if not already present) for client use 834, where the
client use 834 on a computer system causes communication
with the server use 832 on a server system.

FIG. 8A also shows an optional configurable interactive
producer output layout graphical user interface module 840
being provided for the standalone use 830 and the client use
834. The object-oriented source code 820 would be run by the
runtime to generate the producer graph(s), and the config-
urable interactive producer output layout graphical user inter-
face module 840 allows for graphically displaying outputs
from and interacting with the producer graphs. Specifically,
the configurable interactive producer output layout graphical
user interface module 840 includes: 1) a configuration and
mapping graphical user interface module 844 to allow for the
configuration of the layout and mapping of selected producer
outputs (e.g., areas of the screen to be used, how the data is to
be displayed, etc.); and 2) a rendering and interaction graphi-

US 9,424,050 B2

41

cal user interface module 846 to render the configured layout
and to allow for the overriding of producer outputs (which
results in the updating ofthe producer graphs through a global
execute command). It should be understood that the config-
urable interactive producer output layout graphical user inter-
face module 840 may or may not be created by the same entity
that writes the runtime 810.

FIG. 8B is a block diagram illustrating a second exemplary
framework within which applications are provided to end
users according to one embodiment of the invention. FIG. 8B
is identical to FIG. 8 A, with the following exceptions: 1) the
stand alone used 830 is not present; 2) the object oriented
source code 820 is provided to server use 832, while the client
code 824 is not provided to client use 834; 3) the configurable
interactive producer output layout graphical user interface
module 840 is provided to server use 832 and not client use
834; and 4) a generic configurable interactive producer output
layout client interface 885 is provided to client use 834. The
configurable interactive producer output layout client inter-
face 885 is used to interface with the configurable interactive
producer output layout graphical user interface module 840.

Regardless of the framework used, in one embodiment of
the invention the producer graph oriented programming
framework offers the ability to interface with programs not
written with producer dependency declarations. This ability
to interface with programs not written with producer depen-
dency declarations includes: 1) a caller part (such as a graphi-
cal user interface not written according to producer graph
oriented programming); and 2) a called part (such as an exter-
nal data source not written according to producer graph ori-
ented programming). The caller part may, through client
code, issues producer graph oriented programming com-
mands. The called part is implemented as part of producers
that wrap the called part (referred to as “wrapping produc-
ers”). Executing the called part (such as reading data from a
data source or subscribing to changes of data in an external
data source) may in turn trigger instance modifications. These
changes may occur by calling the property set methods in the
code of'the wrapping producers. Get property producers (get-
ters) are caused to have dependencies on these wrapping
producers, in order to make sure that instance modifications
triggered by the changes occurring in an external data source
are properly propagated through the producer graph. As pre-
viously described, different embodiments may support one or
more ways for declaring producer dependencies with respect
to property producers. For example, in some embodiments of
the invention that support sequencing producer dependen-
cies, SequencingDependencies may be used for declaring
non-subscription downwardly declared sequencing producer
dependencies on the wrapping producers. As yet another
example, in some embodiments of the invention that support
sequencing producer dependencies and non-subscription
upwardly declared producer dependencies, UpwardDepen-
dencies and/or WeaklyConstrainedDependencies may be
may be placed in the producer dependency declaration of the
wrapping producers to create non-subscription upwardly
declared sequencing producer dependencies for the property
producers.

FIGS. 8C-F illustrate exemplary screenshots and usage of
the configurable interactive producer output layout graphical
user interface module 840 according to one embodiment of
the invention. While embodiments of the invention will be
described with reference to the configurable interactive pro-
ducer output layout graphical user interface module 840 pro-
viding for the configuration, mapping, and interaction with
selected outputs of the current producers graph(s) in the form
of a spreadsheet, alternative embodiments of the invention

10

15

20

25

30

35

40

45

50

55

60

65

42

may be implemented to additionally or alternatively provide
support for another form. Further, while exemplary ways of
performing the configuration, mapping, and interaction in the
form of a spreadsheet is described according to some embodi-
ments, other embodiments of the invention may perform
these operations another way, with different interface, and/or
with a different screen layout. Further, the spreadsheet may
support any of the known functionalities associated with
spreadsheets (e.g., color selection, font selection, bar/pie/line
charts, pivot tables, saving layouts, loading layouts, etc.).

FIGS. 8C-D illustrate exemplary screenshots and usage of
free cell selection according to one embodiment of the inven-
tion, while FIGS. 8E-F illustrate exemplary screenshots and
usage of table creation according to one embodiment of the
invention. Each of FIGS. 8C-F include a menu bar 850 along
the top of the screen, a list of classes (with their get property
methods) 852 of the producers in the current producer graph
and their outputs down the left side of the screen, and a
configuration and mapping viewer 854 filling the remainder
of the screen with a spreadsheet like layout. In addition,
FIGS. 8C-F also show the following exemplary list of classes
with their get property methods in the list 852: 1) the class
PERSON; 2) the get property methods of the class person
including FIRSTNAME (e.g., string), LASTNAME (e.g.,
string), GENDER (e.g., string), HOMEADDRESS (instance
of the class ADDRESS), PROFESSIONALADDRESS (in-
stance of the class ADDRESS), DATEOFBIRTH (e.g., date),
and AGE (e.g., integer); 3) the class ADDRESS; and 4) the get
property methods of the class ADDRESS including CITY
(e.g., string), STATE (e.g., string), ZIPCODE (e.g., string).
As such, the current producer graph includes producers of the
classes PERSON and ADDRESS, as well as producers whose
outputs are of classes PERSON and ADDRESS. It is also
worth nothing that the get property method AGE calculates an
age based on the output of the get property method DATEOF-
BIRTH; as such, a producer instantiated from the get property
method AGE will be dependent on a producer instantiated
from the get property method DATEOFBIRTH.

FIGS. 8C-D show the following free text entered in con-
secutive cells of the first column of the viewer: CUSTOMER,
FIRST NAME, LAST NAME, DATE OF BIRTH, and AGE;
while FIGS. 8E-F show the following: 1) free text entered in
the first row of the viewer—CUSTOMER LIST; and 2) free
text entered in consecutive cells of the second row of the
viewer FIRST NAME, LAST NAME, DATE OF BIRTH,
AND AGE.

FIG. 8C illustrates an exemplary screenshot and usage of
free cell selection with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention. FIG. 8C shows a set of
mappings 856 of the class PERSON and selected get property
methods of the class PERSON to different cells of the viewer.
Specifically, the class PERSON is mapped to the cell to the
right of'the free text CUSTOMER. As part of this action, some
embodiments of the invention prompt the user to select from
one of a number of supported filters (show as filter selection
858) (e.g., drop down list, form scrolling arrows, etc.). These
filters enable the selection of one or more instance keys of
producers of the selected class, or one or more instance keys
of the producers whose output class is the selected class.
While some embodiments of the invention support a number
of filters, other embodiments of the invention default to one
(and allow the user to chose whether to select a different one)
or support only one and do not need to perform filter selection
858. The mappings 856 also show that the get property meth-
ods FIRSTNAME, LASTNAME, DATEOFBIRTH, and
AGE of the class PERSON are respectively mapped to the

US 9,424,050 B2

43

cells adjacent to the cells with corresponding free text. Such
amapping may be performed with any number of well known
techniques, including drag and drop, typing in a GUI field,
etc.

FIG. 8D illustrates another exemplary screenshot and
usage of free cell selection with the configurable interactive
producer output layout graphical user interface module 840
according to one embodiment of the invention. FIG. 8D
shows that the cell to which the class PERSON was mapped
to allow for instance selection 854. Specifically, based on the
filter used for this cell, the user is given the opportunity to
select an instance of the class PERSON from a list including
the instance keys (s) of the producers of the class PERSON,
and the instance keys of the producers producing the class
PERSON. The selection of an instance of the class PERSON
(or the existence of a single instance) results the automatic
population of the cells, to which the get property methods of
the class PERSON were mapped, with the outputs of the
corresponding get property methods of that instance. This
populating of the table based on the instances of the class
PERSON is labeled 858. In the example of FIG. 8D, the cells
to which the get property methods FIRSTNAME, LAST-
NAME, DATEOFBIRTH, and AGE of the class PERSON
were mapped being respectively populated with JOHN,
SMITH, Jul. 20, 1990, and 16.

FIG. 8D also shows that cells of the viewer to which get
property methods have been mapped may be overridden. By
way of example, FIG. 8D shows that if the cell to which the
get property method DATEOFBIRTH is mapped is overrid-
den, then it will cause the overriding of the output of the
producer whose output is currently populating that cell, invo-
cation of a global execute command (which would result in a
reexecution of the producer whose output is currently popu-
lating the cell to which the get property method AGE is
mapped), and any necessary updating of the display.

FIG. 8E illustrates an exemplary screenshot and usage of
table creation with the configurable interactive producer out-
put layout graphical user interface module 840 according to
one embodiment of the invention. FIG. 8E shows a zone and
orientation selection 864 operation is performed to identify a
three row vertical table directly under the cells with free text
FIRST NAME, LAST NAME, DATE OF BIRTH, AND AGE
(illustrated with a thick dashed line around these cells). Dif-
ferent embodiments of the invention may support the user
performing this operation any number of ways (including: 1)
selection of an area with an input device like a mouse; and 2)
selection between a vertical, horizontal, or pivot table with an
interface like a popup menu—assuming multiple orientations
are supported). FIG. 8E also shows a set of mappings 866 of
selected get property methods of the class PERSON to dif-
ferent cells of the viewer. Specifically, the mappings 866
show that the get property methods FIRSTNAME, LAST-
NAME, DATEOFBIRTH, and AGE of'the class PERSON are
respectively mapped to the cells directly beneath the cells
with corresponding free text.

FIG. 8F illustrates another exemplary screenshot and usage
of table creation with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention. The mappings 866
results in the automatic population of the columns of the
table, to which the get property methods of the class PERSON
were mapped, with the outputs of the corresponding get prop-
erty methods of the instances of that class. This populating of
the table based on the instances of the class PERSON is
labeled 868. In the example of FI1G. 8D, the columns to which
the get property methods FIRSTNAME, LASTNAME,
DATEOFBIRTH, and AGE of the class PERSON were

25

35

40

45

50

55

60

65

44

mapped being populated with the following rows of data: 1)
STEVE, COLLINS, Jul. 20, 1990, and 16; 2) JENNIFER,
ADAMS, Jul. 20, 1990, and 16; and 3) JOHN, SMITH, Jul.
20, 1985, and 21.

As in FIG. 8D, FIG. 8F shows that cells of the viewer to
which get property methods have been mapped may be over-
ridden. By way of example, FIG. 8F shows that if the cell of
the second row of the column to which the get property
method DATEOFBIRTH is mapped is overridden, then it will
cause the overriding of the output of the producer whose
output is currently populating that cell, invocation of a global
execute command (which would result in a reexecution of the
producer whose output is currently populating the cell to
which the get property method AGE is mapped), and any
necessary updating of the display.

FIGS. 8C-F illustrate exemplary screens generated by the
configuration and mapping graphical user interface module
842. The screens generated by the rendering and interactive
graphical user interface module 846 are the same, with the
exception that the list of classes (with their get property
methods) 852 the configuration and mapping viewer 854 are
replaced by a rendering and interactive viewer (not shown)
that contains the same image as the configuration and map-
ping viewer 854 displayed (the difference being the mapping
feature is no longer available).

Exemplary Runtime Distribution Schemes

FIGS. 9A-C illustrate various schemes for distributing a
runtime with producer graph oriented programming support.
It should be understood that these distribution schemes are
exemplary, and thus other schemes are within the scope of the
invention.

FIG. 9A is a block diagram illustrating a first scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9A, object-oriented source code 905 (which would
include producer dependency declarations) is shown ontop of
aruntime with producer graph oriented programming support
910, which is on top of a runtime with class loading, dynamic
class instantiation, dynamic single method invocation, and
class/method introspection 915, which is on top of an oper-
ating system 920. In FIG. 9A, the runtime 910 works with the
runtime 915. While any number of mechanisms may be used
to allow runtime 910 to work with runtime 915, a metadata
facility is described by way of example. A metadata facility
allows additional information to be added to source code,
which information is used by development tools. For
example, the Metadata Facility for Java specification defines
an API for annotating fields, methods, and classes as having
particular attributes that indicate they should be processed in
special ways by development tools, deployment tools, or
run-time libraries (Java Specification Request 175). In this
example, a programmer programming the object-oriented
source code 905 would add annotations to methods in the
form of the producer dependency declarations. Since these
annotations are handed off by the runtime 915 to the runtime
910, the runtime 910 dictates the syntax of the producer
dependency declarations. In FIG. 9A, the runtimes 910 and
915 may be developed and/or distributed by different organi-
zations.

FIG. 9B is a block diagram illustrating a second scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9B, object-oriented source code 925 (which would
include producer dependency declarations) is shown ontop of
a runtime (with class loading, dynamic class instantiation,
dynamic single method invocation, and class/method intro-
spection, as well as producer graph oriented programming

US 9,424,050 B2

45

support) 930, which is on top of an operating system 935. In
comparison to FIG. 9A, the runtime 910 and 915 have been
combined into a single runtime 930. As a result of this com-
bination, the runtime 930 dictates the syntax of the producer
dependency declarations. Thus, a programmer programming
the object-oriented source code 925 would add the producer
dependency declarations in the required syntax.

FIG. 9C is a block diagram illustrating a third scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9C, object-oriented source code 940 (which would
include producer dependency declarations) is shown on top of
an operating system runtime (with class loading, dynamic
class instantiation, dynamic single method invocation, and
class/method introspection, as well as producer graph ori-
ented programming support) 945. In comparison to FIG. 9B,
the runtime 920 and operating system 935 have been com-
bined into a single entity. As a result of this combination, the
operating system runtime 945 dictates the syntax of the pro-
ducer dependency declarations. Thus, a programmer pro-
gramming the object-oriented source code 940 would add the
producer dependency declarations in the required syntax.

While embodiments are described in which the runtime has
class loading, dynamic class instantiation, dynamic single
method invocation, and class/method introspection, alterna-
tive embodiments may include more or less features (e.g.,
instance cloning, dynamic proxies, primitive type conver-
sions, etc.).

Exemplary Advantages

In one embodiment of the invention, producer dependen-
cies are declared for methods as a way to specify method
invocation sequencing using the appropriate instances (where
the appropriate instances include the instances to use as argu-
ments, the instances to be used by instance methods, and the
meta class instances used by class methods) without using
manual invocation sequencing code. Effectively, the work of
generating some or all of manual invocation sequencing code
is replaced with: 1) work done by the application programmer
to write the producer dependency declarations; and 2) work
done by the runtime to discover and build the producer
graph(s) and execute the producers of those producer
graph(s). In other words, the logic that was previously con-
tained in the manual invocation sequencing code is discover-
able by the runtime during run time based on the producer
dependency declarations. Thus, the producer dependency
declarations inform the runtime what methods of what
instances with what arguments to execute, and when for syn-
chronization purposes. Although the effort to write the runt-
ime is relatively great, it needs only be written once in that it
can be used to execute any object-oriented applications writ-
ten for the runtime; in contrast, for a typical application, the
effort to write the producer dependency declarations is rela-
tively low in comparison to writing manual invocation
sequencing code.

Reducing Programming Mistakes

Producer graph oriented programming typically reduces
the costs associated with the debugging and/or performance
tuning of the manual invocation sequencing code. This is true
for at least the reason that the infrastructure of an application
program is conceptually a set of non-formalized graphs of
transformation methods of objects (the output of one method
of'an object is the input to another, and so on) that operate on
specific inputs. The producer dependency declarations and
the runtime with producer graph oriented programming sup-
port formalizes these graphs as producer graphs. Thus, for
each opportunity for data to change, the application program-
mer need not consider its effect and write manual invocation
sequencing code to cause the appropriate transformation

10

15

20

25

30

35

40

45

50

55

60

65

46

methods of the appropriate instances to be invoked in the
appropriate order with the appropriate inputs. In other words,
for each opportunity for data to change, an application pro-
grammer need not consider which graphs are affected, as well
as which transformation methods of instances within those
graphs are affected. Rather, the automated producer graph
generation module discovers and builds the producer graphs
and the producer graph execution module reexecutes the pro-
ducer graphs as needed to reflect changes in the data. This
automation helps application programmers avoid mistakes
such as: 1) invoking the appropriate transformation methods
of the appropriate instances in the wrong order; 2) forgetting
to include commands to cause the one or more required trans-
formation methods of instances in a graph to be invoked
responsive to some data being changed; 3) including com-
mands to cause unnecessary transformation methods of
instances to be invoked responsive to some data being
changed (e.g., including commands to invoke transformation
methods of instances that are not part of a graph affected by
the change in data; including commands to invoke transfor-
mation methods of instances that are part of a graph affected
by the change in the data, but are not themselves affected;
etc.).

Synchronization

As previously described, the caching of producer outputs
during execution allows for synchronization. Thus, in terms
of comparison to the observer pattern, the producer depen-
dency declarations notify a runtime with producer graph ori-
ented programming support of the dependencies, and the
runtime determines what producers and when to call back.

Ability to Fully Explain any Result

In one embodiment of the invention, a drilling/viewing
module (not shown) is included as part of the runtime. The
drilling/viewing module provides a graphical user interface
which, through interaction by an end user, allows for drilling
down into the producer graph (walking down a producer
graph from the root node) to view the outputs of the various
producers of the producer graph. This allows an end user to
see the various outputs that contributed to the output of the
producer of interest, including the data values and dependen-
cies (returned by dependency determination producers). Fur-
ther, in one embodiment of the invention, this drilling/view-
ing module provides the ability for the end user to view the
code inside the methods of the producers, the values of the
instances of the producers, and/or the content of the classes of
the producers.

Thus, the drilling/viewing module provides for a variety of
post processing activities, including debugging, explanation
of outputs, etc.

Exemplary Practical Application/Technical Affect/Indus-
trial Applicability

There are a variety of exemplary practical applications of
the different aspects and embodiments of the invention. For
example, the runtime, as part of executing application pro-
grams, causes the retrieval of information from a machine
storage media (e.g., accessing the object-oriented source
code, including the producer dependency declarations), the
storage of information to a machine storage media (e.g.,
storing data structures like the producer graph(s) structure,
etc.), the operation of hardware processing resources, the
provision of the outputs of the producer(s) of interest (e.g.,
through a graphical user interface, storage to machine storage
media, transmission, etc.), etc. In one sense, preprocessing
activity includes the writing of such an application program
and/or the provision of data (which data may represent any
number of physical and/or practical items, such as financial
values, geographical values, meteorological values, actuarial

US 9,424,050 B2

47

values, statistical values, physical measures, machine state
values, etc.), while post processing activity includes the pro-
vision of results (which results may represent any number of
physical and or practical items, such as financial analysis,
geographical analysis, meteorological analysis, actuarial
analysis, statistical analysis, industrial measures, machine
control information, etc.). By way of specific example, post
processing activity may be provided by: 1) the producer graph
viewer module 1062 of FIG. 10 for graphically displaying a
representation of the current producer graph(s) generated by
the runtime; and/or 2) the configurable interactive producer
output layout graphical user interface module 840 (see also,
configurable interactive producer output layout graphical
user interface module 1085 of FIG. 10) for graphically dis-
playing outputs from and interacting with the producer
graphs.

As another example, the application program with pro-
ducer dependency declarations itself, when executed by the
runtime, represents the physical/practical items and causes
the operations described above. By way of specific example,
these producer dependency declarations cause data structures
to be formed in machine storage media responsive to their
execution by the runtime. Also, the producer dependency
declarations are stored and retrieved from machine storage
media along with the application program. Further, these
producer dependency declarations represent relationships
between producers, while producers represent operations to
be performed (methods) and instances. The instances in
object-oriented programming may be used to represent physi-
cal and/or practical items, while the producers represent
operations to be performed on these representations.

By way of another example, a set of one or more applica-
tion programs and the runtime implement cross-asset risk
management software covering foreign exchange, equity,
interest rate, credit, inflation, commodity, and cross-asset
composite products. These products range from cash and
physical plain vanilla products to exotic and complex deriva-
tive products. Also included is a set of mathematical valuation
models for these products, and their associated market data,
payment and accounting entries generation routines and their
associated observables, calibration models and their associ-
ated raw inputs.

By way of another example, a set of one or more applica-
tion programs and the runtime may implement a word pro-
cessor, a spreadsheet, a communication/e-mail software, a
photo viewing software, a virus scan software, a media
player, a database server, a game, an industrial application,
and/or an operating system. Of course, application programs
can be implemented to perform a variety of other tasks.
Exemplary Implementations

By way of illustration, exemplary embodiments of the
invention will be described that support dependencies,
dynamic dependencies (including contingent dependencies
and subscription dependencies), explicit dependency deter-
mination producers for shortcut declared dependencies and
for non-shortcut declared dependencies, on the fly depen-
dency determination producers for shortcut declared depen-
dencies, class keys, instance keys, method keys, producer
override/unoverride commands (which are types of set com-
mands), and global execute commands. In addition, the exem-
plary embodiments optionally support a producer graph inter-
active viewer module and incremental execution. Of course,
alternative embodiments of the invention may implement
more, less, and/or different features.

FIG. 10 is a block diagram of an exemplary implementa-
tion according to one embodiment of the invention. In FIG.

20

40

45

65

48

10, dashed dividing line 1000 separates a runtime client 1002
from a runtime with producer graph oriented programming
support 1004.

The logical execution flow of the runtime client 1002
includes blocks 1010, 1020, 1025, 1030, and 1035, and the
runtime with producer graph oriented programming support
1004 includes respectively corresponding blocks 1095, 1098,
1040, 1045, 1070, and 1082; while a solid arrowed line rep-
resents a direct causal relationship from block 1035 of the
logical execution flow of the runtime client 1002 to block
1070 of the runtime with producer graph oriented program-
ming support 1004, dotted arrowed lines illustrate a causal
relationship from blocks 1010, 1020, 1025, and 1030 of the
runtime client 1002 to blocks 1095, 1098, 1040, and 1045 of
the runtime with producer graph oriented programming sup-
port 1004. Depending on the embodiment of the invention,
these later causal relationships may be direct or indirect. For
example, similar to FIG. 6, an optional indirect causation
through the use of a command log (not shown) and/or over-
ride log 1047 may be used. Further blocks 1095 and 1098 are
dashed because they may optionally be part of a different
block depending on the embodiment of the invention (e.g.,
block 1095 may be part of block 1098; block 1090 may be
part of block 1040; blocks 1095 and 1090 may be part of
block 1040). Similarly, block 1045 is dashed because it may
be optionally part of a different block depending on the
embodiment of the invention (e.g., block 1045 may be part of
block 1070). Likewise, block 1049 may be optionally part of
a different block depending on the embodiment of the inven-
tion (e.g., block 1049 may be part of block 1040). In some
embodiments, the runtime 1004 includes a metrics acquisi-
tion module 1082. The metrics acquisition module 1082 may
optionally be part of block 1070.

In FIG. 10, the runtime 1002 includes class definitions that
include business logic 1010 having data 1012, methods 1014,
execution mode setting 1015, producer dependency declara-
tions 1016, and optionally class keys 1090. The class defini-
tions 1010 are classes in an object-oriented programming
language, and thus include definitions for data 1012 and
methods 1014. The execution mode setting 1015 may specify
at code level an execution mode in which the method is to be
executed if the execution mode setting is not overridden later.
In addition, these class definitions 1010 include producer
dependency declarations 1016 for the method 1014 as previ-
ously described. Further, in one embodiment of the invention,
each class has a class key 1090 for tracking purposes.

The new class module 1095 of the runtime 1004 loads and
introspects the class definitions 1010 (e.g., responsive to new
class commands). This loading and introspecting may be
done using any number of well known or future developed
techniques, including those to selectively load classes for
optimization purposes. The loading of the classes by the new
class module 1095 is illustrated by classes 1054 of the runt-
ime 1004. As part of loading and introspecting the classes
1054, the new class module 1095 also loads and introspects
the producer dependency declarations 1016 as illustrated by
methods and producer dependency declarations 1056 in the
classes 1054. The new class module 1095 also maintains a
class tracking structure 1092 that is used for tracking the
classes using the class keys. Thus, the class tracking structure
1092 maintains a correspondence between class keys and
references into the classes 1054. In addition, the new class
module 1095 also maintains a method tracking structure 1058
that is used for tracking methods using the method keys.
Thus, the method tracking structure 1058 maintains a corre-
spondence between method keys and references to the meth-
ods, as well as information regarding the producer depen-

US 9,424,050 B2

49

dency declarations. Further, the new class module 1095 may
input the execution mode setting 1015 to the producer-based
configurable decision structure 1049, which maintains the
execution modes for producers.

The runtime client 1002 also includes instance instantia-
tion commands with instance keys 1020. The new instance
module 1098 of the runtime 1004 instantiates the instances
designated by the instance instantiation commands with
instance keys 1020 (e.g., responsive to new instance com-
mands). This instantiation of instances may be done using any
number of well known or future developed techniques,
including those to selectively instantiate instances for opti-
mization purposes. As part of this instantiation of instances,
the new instance module 1098 accesses the class tracking
structure 1092 using a class key to access the appropriate
class from the classes 1054. The instantiation of instances by
the new instance module 1098 is illustrated by instances 1052
of the runtime 1004. The new instance module 1095 also
maintains an instance tracking structure 1065 that is used for
tracking the instances using the instance keys. Thus, the
instance tracking structure 1065 maintains a correspondence
between instance keys and references into the instances 1052.
As previously indicated, the new class module 1095 may be
part of the new instance module 1098 in that the classes 1054
may be instantiated responsive to the instance instantiation
commands 1020, as opposed to separate new class com-
mands.

The runtime client 1002 also includes producer instantia-
tion commands with producer keys 1025. The automated
producer graph generation module 1040 of the runtime 1004
loads producers designated by the producer instantiation
commands with producer keys 1025 (e.g., responsive to new
producer commands designating the current set of producers
of interest). In addition, the automated producer graph gen-
eration module 1040 also discovers, builds, and optionally
resolves the producer graph(s) responsive to the current set of
producers of interest as previously described. In one embodi-
ment of the invention, a producer key is comprised of a class
key, instance key, and method key. As part of this instantiating
of producers, the automated producer graph generation mod-
ule 1040: 1) accesses the class tracking structure 1092 using
the class key to access the appropriate class from the classes
1054; 2) accesses the instance tracking structure 1065 using
the instance key to access the appropriate instance from the
instances 1052; and 3) accesses the method tracking structure
1058 using the method key to access the appropriate producer
dependency declaration statement. The instantiating of the
producers designated by the producer instantiation com-
mands with producer keys 1025 and instantiating of the any
discovered producers and building the producer graph is illus-
trated by producer graph(s) structure 1060 of the runtime
1004. Thus, in one embodiment ofthe invention, the producer
keys identified by the producer instantiation commands with
producer keys 1025 and those discovered through producer
graph generation are stored in the producer graph(s) structure
1060, along with addition information to represent the current
producer graph(s).

As previously described, the block 1095 and 1098 may be
part of block 1040, and thus, the decision regarding which
classes, instances, and producers to load/instantiate is driven
by what producers are in the current producer graph(s). In
such an embodiment of the invention, the loading/instantia-
tion of class, instances, and producers is optimized and is
producer centric.

The runtime client 1002 also includes data preparation
commands, including producer output override/unoverride
commands 1030. The override/unoverride commands

10

15

20

25

30

35

40

45

50

55

60

65

50

include the producer key of the producer to be overridden/
unoverriden, as well as the override values when being over-
ridden. The override producer output module 1045 of the
runtime 1004 causes producers designated by the producer
override/unoverride commands to be overridden/unover-
riden. This causation may be indirect or direct.

In the case of indirect causation, the override producer
output module 1045 populates the override log 1047 for con-
sumption by the producer graph execution module 1070. In
the case of direct causation, the override producer output
module 1045 accesses the producer output caching 1097 of
the producer graph(s) structure 1060 and the instances 1052.
Specifically, as described with reference to the override pro-
ducer output module 390, in one embodiment, producers can
be classified as property producers or method producers; thus,
the override producer output module 1045 may include an
override property producer output module for overridden
property producers and an override method producer output
module for overridden method producers (not shown); the
overriding of a property method causes the overridden value
to be stored in the producer output caching 1097 of the pro-
ducer graph(s) structure 1060 and to be stored in the data of
the appropriate instance of the instances 1052, whereas the
overriding of a method producer causes the overridden value
to be stored in the producer output caching 1097.

In one embodiment of the invention producers may not be
overridden before a producer graph of which they will be part
has been initially executed (thus, the producer will already be
instantiated as a result of being designated as a producer of
interest or as a result of being discovered by the automated
producer graph generation module 1040). However, in the
embodiment shown in FIG. 10, producers may be overridden
before the initial execution by being instantiated and overrid-
den with a producer override command. Such an overridden
producer will typically eventually become part of a producer
graph through the discovery process (e.g., when a dynamic
dependency is resolved). In some embodiments of the inven-
tion, this data preparation may also include other types of set
commands. The override producer output module 1045 is
shown as a dashed box because it may not be present in
alternative embodiments of the invention.

The producer graph(s) structure 1060 also optionally
includes incremental execution marking 1080 for some
embodiments of the invention that support incremental
execution. As previously described with reference to the
incremental execution marking 382 of FIG. 3B, the incremen-
tal execution markings 1080 is used to assist with incremental
execution of the producer graph(s) on execution beyond that
of the initial execution. Different embodiments of the inven-
tion that use the incremental execution marking 382, use them
in different ways. For example, in one such embodiment of
the invention that has a command log, the log is used to track
which producers have been added and/or modified, and the
incremental execution marking 382 are used to mark those
producers that are affected (ancestors of the modified or
added producers, and thus dependent on them). As another
example, in one such embodiment of the invention that does
not have a command log, the incremental execution marking
382 are used to mark those producers that are added or modi-
fied, as well as those that are ancestors of the modified or
added producers (and thus dependent on them). As another
example, in one such embodiment of the invention that does
not have a command log, modifications and additions of
producers are done immediately and the incremental execu-
tion marking 382 are used to mark those producers that are
ancestors of the modified or added producers (and thus
dependent on them). While embodiments of the invention

US 9,424,050 B2

51

have been described that support incremental execution and
use incremental execution marking, other embodiments of
the invention support incremental execution that do not use
incremental execution marking (e.g., a command log is used
to track which producers were added or modified, and a list of
execution start producers is maintained in an execution start
log; where the producer graph execution module 1070 starts
from the execution start producers and works its way up the
ancestors of the producer graph(s) to the top; by way of
example and not limitation, this embodiment of the invention
is described later herein with regard to FIGS. 15-25.

The runtime client 1002 also includes execution mode
selection commands 1036 according to some embodiments of
the invention. A user may use the execution mode selection
commands 1036 to change the execution mode setting(s) by
changing the runtime setting structure 1048, the producer-
based configuration decision structure 1049, and/or the pro-
ducer graph structure 1060. In one embodiment, the execu-
tion mode selection commands 1036 change the producer-
based configuration decision structure 1049 to modify the
execution mode settings of a particular class, a particular
instance, a particular method, or any combination of the
above. For example, a first execution mode selection com-
mand may change the execution mode setting of all methods
of'a particular class to a first execution mode, a second execu-
tion mode selection command may change the execution
mode setting of a particular instance of a particular class, a
third execution mode selection command may change the
execution mode setting of a particular method, a fourth execu-
tion mode selection command may change the execution
mode setting of a particular method and a particular instance,
and so on. Alternatively, a user may use the execution mode
selection commands 1036 to change the execution mode set-
ting(s) on a producer-by-producer basis by changing the pro-
ducer graph structure 1060. Since each producer in the pro-
ducer graph structure 1060 has a producer execution mode
setting, the execution mode selection commands 1036 may
provide a producer key identifying a particular producer and
adesired execution mode setting for the particular producerto
cause the runtime 1004 to change the execution mode setting
for the particular producer to the desired execution mode
setting.

The runtime client 1002 also includes global execution
commands 1035. The producer graph execution module 1070
of the runtime 1004 executes the producer graph(s). The
producer execution module 1070 may execute each producer
in the producer graph(s) based on the corresponding execu-
tion mode of the producer from the producer-based configu-
ration structure 1049. In some embodiments, the producer
execution module 1070 may override the execution mode of
a predetermined producer from the producer-based configu-
ration structure 1049. For instance, if the execution mode
from the producer-based configuration structure 1049 is not
supported by the runtime 1004, then the producer execution
module 1070 may override such execution mode.

In some embodiments, the runtime 1004 supports three
execution modes namely, multiprocessing, multithreading,
and local execution. Thus, the producer execution module
1070 includes a parallelization module 1076, a multiprocess-
ing module 1077, a multithreading module 1078, and a local
execution module 1079. For each producer, the automatic
producer graph generation module 1040 may find the corre-
sponding execution mode from the producer-based configu-
ration decision structure 1049 and may set the producer
execution mode setting accordingly in the producer graph
structure 1060 if the corresponding execution mode is not
overridden by a runtime setting in the runtime setting struc-

5

10

15

20

25

30

35

40

45

50

55

60

65

52

ture 1048. Based on the producer execution mode setting in
the producer graph structure 1060, the parallelization module
1076 may send the producer to a corresponding one of the
multiprocessing module 1077, the multithreading module
1078, and the local execution module 1079. Then a task may
be instantiated for the producer at the multiprocessing mod-
ule 1077, the multithreading module 1078, and/or the local
execution module 1079. A task is a logically high level, dis-
crete, independent section of computational work. A task is
typically executed by a processor as a program.

In some embodiments, if the execution mode is multipro-
cessing, then the parallelization module 1076 may send the
producer to the multiprocessing module 1077. The multipro-
cessing module 1077 may serialize the task corresponding to
the producer as well as the inputs to the producer, and add the
serialized task and inputs to a job. When the tasks correspond-
ing to all ready to be executed producers having an execution
mode of multiprocessing have been added to the job, the
multiprocessing module 1077 may send the job to a grid
dispatcher 1081 to be forwarded to a grid of processors. Then
some or all of the processors in the grid may execute the tasks
in the job distantly. If the execution mode is multithreading,
then the parallelization module 1076 may send the producer
to the multithreading module 1078. The multithreading mod-
ule 1078 may initiate a thread pooling mechanism and feed
the task corresponding to the producer to an available thread
to be executed. If the execution mode is local execution, then
the parallelization module 1076 may send the producer to the
local module 1079. The local module 1079 may then execute
the task within the current runtime thread.

In some embodiments, the parallelization module 1076
may send a producer to a predetermined one of the multipro-
cessing module 1077, the multithreading module 1078, and
the local execution module 1079 by default if no execution
mode has been specified for the producer. On the other hand,
if the class definition 1010 of the producer includes an execu-
tion mode setting 1015 for the producer, the parallelization
module 1076 may send the producer according to the execu-
tion mode setting 1015 unless the execution mode setting
1015 is overridden. The execution mode setting 1015 may be
overridden in various ways. In one embodiment, the execu-
tion mode selection commands 1036 changes the execution
mode settings in the producer-based configurable decision
structure 1049 on a class basis, a method basis, an instance
basis, or any combination of the above, to override the execu-
tion mode setting 1015. In one embodiment, the execution
mode selection commands 1036 changes the execution mode
settings on a producer-by-producer basis in the producer
graph structure 1060 to override the execution mode setting
determined using the producer-based configurable decision
structure 1049. In one embodiment, the execution mode
selection commands 1036 changes the execution mode set-
tings on a runtime global level in the runtime setting structure
1048 to override the execution mode settings in the producer
graph structure 1060.

As such, the producer graph execution module 1070 modi-
fies the producer output caching 1097 (in the case of property
producers and method producers), uses the incremental
execution marking 1080 (if present), and modifies the data of
the instances 1052 (in the case of property methods). In some
embodiments, the metrics acquisition module 1082 may
acquire metrics during execution of the producers. The met-
rics acquired may be stored in metrics 1083 in the producer
graph(s) structure 1060. Note that the metrics may be
acquired on a producer basis, and since a producer includes a
unique combination of a class, a method, and an instance, the

US 9,424,050 B2

53

metrics acquired may be on a class-instance-method basis.
Furthermore, the metrics acquired may be on a task basis
and/or on a job basis.

In some embodiments, the metrics acquired include difter-
ent types of metrics for different usages, such as for monitor-
ing the computing environment, for monitoring distant execu-
tion time, for monitoring local execution time, for monitoring
data streams, for monitoring overall execution time, for
benchmarking different types of execution, etc. For example,
to monitor the computing environment, metrics such as the
number of processors or engines available on a remote grid
used in multiprocessing and dedicated to execution of the
producers and an empirical ratio observed between local and
distant processing times may be acquired. For instance, if the
local processor and the distant processor are not overloaded
with other tasks, this empirical ratio may be close to the
frequency ratio between the two processors. To monitor dis-
tant execution time, metrics such as distant processing time,
distant deserialization time, and distant serialization time
may be acquired. To monitor local execution time, metrics
such as local execution time, local deserialization time, and
local serialization time may be acquired. To monitor data
streams, metrics such as size of serialized input objects and
size of serialized output objects may be acquired. When pro-
cessing data on distant processors, input and output data are
exchanged over a network. The efficiency of the distant pro-
cessing is directly linked to the data volume being exchanged.
Monitoring the size of data streams may provide useful infor-
mation to help reduce or avoid overloading the data structures
being exchanged with redundant or useless information. To
monitor overall execution time, metrics such as the overall
time to execute a specific producer may be acquired. In some
embodiments, the overall time to execute a specific producer
may be the sum of local serialization time, distant deserial-
ization time, distant processing time, distant serialization
time, and local deserialization time. This time may be mea-
sured on a task-by-task basis, and may be fairly consistent
(i.e., the times are very close) across all the tasks pertaining to
a single job. To benchmark different types of execution, com-
parison metrics such as speedup and efficiency may be
derived from other metrics acquired. Speedup is a measure of
how much a parallel algorithm is faster than a corresponding
sequential algorithm. Speedup is defined for a particular job
as the sum of local processing times of all tasks (if executed
locally) pertaining to the job divided by the job execution time
(Job Overall time) using a parallel execution approach, such
as multiprocessing. Theoretically, an ideal speedup is reached
when speedup substantially equals to the number of proces-
sors, that is, when serialization times and deserialization
times are close to zero, or compensated by a favorable pro-
cessor efficiency ratio. The efficiency equals to 100*speedup/
number of processors. Again, in a theoretically ideal situation
where local and distant processors are identical, the ideal
efficiency is close to 100%.

Various techniques have been previously discussed for
executing the producers of the producer graph and are appli-
cable here. For instance, in embodiments in which a com-
mand log is implemented, the command log is consumed and
then the producer graph(s) are executed. Further, in embodi-
ments of the invention that support the possibility of unre-
solved dependencies, producer graph execution module 1070
includes dynamic dependency module 1075, which can
invoke the automated producer graph generation module
1040.

FIG. 10 also shows an optional producer graph viewer
module 1062 that provides a mechanism (e.g., a GUI) by
which a programmer/user can view the producer graph(s) and

20

25

30

40

45

50

54

producer outputs of the producer graph(s) structure. Further,
FIG. 10 shows an optional configurable interactive producer
output layout graphical user interface module 1085 to pro-
vider for a graphical user interface (GUI) (including dynamic
invocation of blocks 1030, and 1035) that represents the
configurable interactive producer output layout graphical
user interface module 840.

In embodiments of the invention that use a command log,
different triggers may be use to trigger different actions. For
instance, the producer instantiation commands may be
logged and batch processed responsive to an explicit com-
mand (start logging and end logging), an explicit global
execute command (logging starts automatically at startup and
after each explicit global execute command, and each log is
processed responsive to the following explicit global execute
command), an explicit data preparation command, etc. Simi-
larly, the data preparation commands may be logged and
batch processed responsive to an explicit global execute com-
mand, a first get command, every get command, etc.

Exemplary Tracking Structures

FIGS. 11A-G are block diagrams illustrating exemplary
content of the data structures of FIG. 10 according to one
embodiment of the invention. While FIGS. 11A-G illustrate
these data structures as tables, it should be understood that
any suitable data structure may be used (e.g., a hash map, a
set, a list, etc.).

FIG. 11A is a block diagram of an example of the class
tracking structure 1092 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11A, a class key column 1110
and a class reference column 1115 are shown to respectively
store the class keys and corresponding references to the
loaded classes.

FIG. 11B is a block diagram of an example of the instance
tracking structure 1065 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11B, an instance key column
1120 and an instance reference column 1125 are shown to
respectively store the instance keys and corresponding refer-
ences to the instances. In embodiments of the invention in
which instance keys need not be unique across all classes, the
instance tracking structure also include the class key or ref-
erence for the class of the instance

FIG. 11C is a block diagram of an example of the producer
graph(s) structure 1060 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11C, a class reference column
1135, an instance reference column 1140, and a method ref-
erence column 1145 are shown to respectively store refer-
ences that make up the current producers of the current pro-
ducer graph(s). These references may take a variety of forms.
For example, these columns may respectively store refer-
ences into the classes 1054 (or alternatively 1092), instances
1052 (or alternatively 1065), and methods 1056 (or alterna-
tively 1058). While in one embodiment of the invention these
columns store references, in alternative embodiment of the
invention one or more of these columns store keys.

In addition, FIG. 11C includes a parent producer(s) link(s)
column 1150 (including for each link a parent producer ref-
erence, and a dependency determination producer reference)
and a child producer(s) link(s) column 1160 (including for
each link, child producer reference(s), a dependency deter-
mination producer reference, a link mode, and a sticky link
indicator). Each producer may have zero or more child pro-
ducer links in column 1160. Each child producer link in
column 1160 includes: 1) child producer reference(s) which
are references to other rows of the producer graph(s) structure
to represent a producer dependency according to the producer
dependency declaration; 2) a dependency determination pro-
ducer reference which is a reference to another row of the

US 9,424,050 B2

55

producer graph(s) structure and represents the dependency
determination producer that has created the child link; and 3)
a link mode with a producer dependency type that identifies
whether the producer dependency is a result of an argument,
afield, or a sequencing dependency (see discussion regarding
FIGS. 7A-F), and if an argument, the argument ID of the
producer dependency; and 4) a sticky indicator to indicate
that the link mode is the result of an upwardly declared
dependency (in embodiments of the invention that support
upwardly declared dependencies) or the result of a sticky
subscription (in embodiments of the invention that support
sticky subscriptions) and should not be modified through the
producer argument dependency declaration of this producer
(i.e., the producer stored in the row of the column containing
the sticky indicator). Each producer may have zero or more
parent producer links in column 1150. Each parent producer
link in column 1150 includes: 1) a parent producer reference
that stores back a reference in accordance with a child pro-
ducer reference of another producer (i.e., a reference to
another row of the producer graph(s) structure to represent a
parent producer dependent on this producer); and 2) a depen-
dency determination producer reference which is a reference
to another row of the producer graph(s) structure and repre-
sents the dependency determination producer which has cre-
ated the parent link. Thus, when a link is created, the parent
producer link column of the child producer’s row and the
child producer link column of the parent producer’s row are
modified to represent the link (and the dependency determi-
nation producer reference is the same in both). In one embodi-
ment of the invention, since multiple paths in a producer
graph or different producer graphs may include a given pro-
ducer, there may be multiple parent producer links for a given
producer.

Further, FIG. 11C includes a producer output caching and
override producer output modification column 1170 to store
the current producer outputs, as well as an indication of
whether the producer is overridden and the overridden output
value. Also, FIG. 11C includes an incremental execution
marking column 1180 to store incremental execution mark-
ings as previously described.

In some embodiments, FIG. 11C includes a producer
execution mode setting column 1173 to store the execution
mode setting of each producer in the producer graph structure
1060. For example, the execution mode setting may be one of
multiprocessing, multithreading, and local execution.

Further, FIG. 11C includes a producer metrics column
1175 to store metrics of each producer in the producer graph
structure 1060. The producer metrics are acquired on a pro-
ducer-by-producer basis using the metrics acquisition mod-
ule 1082. Details of some embodiments of the process to
acquire metrics are discussed below.

FIG. 11D is a block diagram of an example of the method
tracking structure 1058 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11D, a method key column
1190 and a method reference column 1192 are shown to
respectively store the method keys and corresponding refer-
ences to the methods of the loaded classes. In addition, FIG.
11D also includes an ArgumentDependencies column 1194, a
FieldDependencies column 1196, a SequencingDependen-
cies column 1195, an UpwardDependencies column 1193, a
WeaklyConstrainedDependencies column 1199, an output
class column 1197, and an optional additional annotations
column 1198 including a default execution mode. The Argu-
mentDependencies column 1194, the SequencingDependen-
cies column 1195, the UpwardDependencies column 1193,
the WeaklyConstrainedDependencies column 1199, and the
FieldDependencies column 1196 store producer dependency

25

35

40

45

55

56

information parsed from the producer dependency declara-
tion statement of the method (e.g., see 705 of FIG. 7A), while
the output class column 1197 stores information regarding
the output class of the output of the method (determinable by
the method’s signature—e.g., see 710 of FIG. 7A). Exem-
plary contents of the ArgumentDependencies column 1194,
FieldDependencies column 1196, SequencingDependencies
column 1195, UpwardDependency column 1193, and Weak-
lyConstrainedDependencies column 1199, used in some
embodiments of the invention are provided later herein.

FIG. 11E is a block diagram of an example of a serialized
form local map according to one embodiment of the inven-
tion. The serialized form local map in FIG. 11E includes a
serialized form identifier (ID) column 1112, an input pro-
ducer key column 1113, an underlying class key and instance
key column 1114, a serialized form 1116, a serialized form
size 1117, and a serialization time 1118. In some embodi-
ments, the serialized form ID, the input producer key, the
underlying instance key, and the serialized form are used to
implement parallelization by the runtime 1004. Details of the
implementation are discussed below. In some embodiments,
the runtime 1004 implements instrumentation to acquire met-
rics on a producer basis. Thus, the runtime 1004 may store the
serialized form size and the serialization time in the columns
indicated by dashed lines in the serialized form local map.
Details of instrumentation are discussed below.

FIG. 11F is a block diagram of an example of the runtime
setting structure 1048 of FIG. 10 according to one embodi-
ment of the invention. The table includes an original execu-
tion mode column 1121 and a final execution mode column
1123. If an execution mode is not overridden on the runtime
global level, the final execution mode is the same as the
original execution mode. On the other hand, if the execution
mode is overridden on the runtime global level, the final
execution mode is different from the original execution mode.
For instance, if the runtime 1004 does not support multipro-
cessing, then multiprocessing may be overridden on the runt-
ime global level by assigning local execution to be the final
execution mode of multiprocessing.

FIG.11G is ablock diagram of an example of the producer-
based configuration decision structure 1049 in FIG. 10. The
table includes a class key column 1182, a method key column
1184, an instance key column 1186, an execution mode set-
ting column 1188. The execution mode selection commands
1036 may modify the execution mode setting in the producer-
based configuration decision structure on the basis of a class,
amethod, an instance, or any combination of the above. Thus,
one or more of the class key column 1182, method key col-
umn 1184, and instance key column 1186 may be empty in a
particular row according to one embodiment of the invention.

Distant Computing

As previously described, one embodiment of the invention
supports an execution mode of multiprocessing. To support
multiprocessing, the runtime may interact with a grid of pro-
cessors by serializing tasks of producers, as well as inputs
and/or an underlying instance of each producers, and sending
the serialized form to the grid to be processed by the proces-
sors in the grid.

FIG.12A is ablock diagram illustrating additional detail of
FIG. 10 to support multiprocessing according to one embodi-
ment of the invention. To the left of the dashed dividing line
1200 is the runtime with producer graph oriented program-
ming support 1004. To the right of the dashed dividing line
12001s a grid 1290. On the side of the runtime 1004, FIG. 12A
includes from FIG. 10 the producer graph execution module
1070 (including the parallelization module 1076, the multi-
processing module 1077, the multithreading module 1078,

US 9,424,050 B2

57
and the local execution module 1079) and the grid dispatcher
1081. On the side of the grid 1290, FIG. 12A includes a
distant computing module 1270.

According to one embodiment of the invention, if an
execution mode of a producer is multiprocessing, the paral-
lelization module 1076 sends the producer to the multipro-
cessing module 1077. The multiprocessing module 1077 may
instantiate a job, which may include multiple tasks. The mul-
tiprocessing module 1077 may instantiate a task for the pro-
ducer. The multiprocessing module 1077 may further serial-
ize the task, as well as the inputs to the producer and/or an
underlying instance of the producer. Then the multiprocess-
ing module 1077 may add the serialized form of the task to the
job. The multiprocessing module 1077 may send the job to the
grid dispatcher 1081. Then the grid dispatcher 1081 may send
the job to the distant computing module 1270 of the grid
1290. Details of the processing of the job by the grid 1290 are
discussed below.

After the job has been processed, serialized outputs and/or
instances of the tasks within the job are returned to the grid
dispatcher 1081. The grid dispatcher 1081 may forward the
serialized outputs and/or instances of the tasks within the job
to the multiprocessing module 1077 to be deserialized.
Dynamic Producer Dependencies

As previously described, one embodiment of the invention
supports non-dynamic and dynamic producer dependencies.
While different embodiments may support different types of
dynamic producer dependencies, one embodiment of the
invention supports contingent and subscription types of
dynamic producer dependencies. Thus, a non-contingent,
non-subscription dependency is a non-dynamic (static)
dependency.

FIG.12B is a block diagram illustrating additional detail of
FIG. 10 to support contingent and subscription type dynamic
producer dependencies according to one embodiment of the
invention. FIG. 12B includes from FIG. 10 the dashed divid-
ing line 1000, the class definitions that include business logic
1010 (which include data 1012, methods 1014, and producer
dependency declarations 1016), the new class module 1095,
the classes 1054 (including methods and producer depen-
dency declarations 1056), the new instance module 1098, the
instances 1052, the instance tracking structure 1065, the auto-
mated producer graph generation module 1040, the producer
graph(s) structure 1060, and the producer graph execution
module 1070 (including the dynamic dependency module
1075).

FIG. 12B shows that the producer dependency declarations
1016 optionally include contingent dependencies 1210, sub-
scription dependencies 1220, and multiple producers 1215.
Here, multiple producers 1215 refers to the ability of a pro-
ducer dependency to return a collection of producers. In addi-
tion, FIG. 12B includes a subscription module 1240 and a
contingency module 1230 in the automated producer graph
generation module 1040 to process the contingent dependen-
cies 1210 and subscription dependencies 1220. F1G. 12B also
shows that the subscription module 1240 accesses a subscrip-
tion log 1250. Further, the dynamic dependency module 1075
includes a contingency module 1260 and a subscription mod-
ule 1265 to process the contingent dependencies 1210 and
subscription dependencies 1220. The subscription module
1265 accesses the subscription log 1250.

The following description of contingent and subscription
dependencies is done in the context of an embodiment of the
invention that uses a class DEP (an abbreviation for depen-
dency), from which an instance is returned by dependency
determination producers and is analyzed by the runtime with
producer graph oriented programming support. The class

10

15

20

25

30

35

40

45

50

55

60

65

58

DEP includes the following fields: 1) TYPE which can be set
to subscription, non-subscription downwardly declared
(child producers that are not subscriptions), or non-subscrip-
tion upwardly declared (parent producers that are not sub-
scriptions); 2) PROD which is used for non-subscription
downwardly declared dependencies and is a collection of
child producers (as such, it can store zero or more producers);
3) SUB TYPE which is used for subscription dependencies
and is set to indicate the type of subscription dependency
(used in embodiments of the invention that support multiple
types of subscription; while the embodiment of the invention
described here can support two types—sticky and absorbing,
alternative embodiments may support more, less, and/or dif-
ferent subscription types; 4) SUB CRIT which is used for
subscription dependencies and is set to indicate the subscrip-
tion criteria; 5) PAR LINK MODE which is used for sticky
subscription dependencies and non-subscription upwardly
declared dependencies and is set to indicate what the link
mode ofthe parent producer should be; 6) PAR CLASS which
is used for sticky subscription dependencies and non-sub-
scription upwardly declared dependencies and is set to indi-
cate what the class of the parent producer (e.g., the class key)
should be; 7) PAR METHOD which is used for sticky sub-
scription dependencies and non-subscription upwardly
declared dependencies and is set to indicate what the method
of'the parent producer (e.g., the method key) should be; and 8)
PAR INSTANCE which is used for sticky subscription depen-
dencies and non-subscription upwardly declared dependen-
cies and is set to indicate what the instance of the parent
producer (e.g., the instance key) should be (If PAR
INSTANCE is left blank, the instance key of the child pro-
ducer is then used for the parent producer). An alternative
embodiment could use a collection of parent producers (each
item of the collection holding a PAR_CLASS, PAR_IN-
STANCE, PAR_METHOD, PAR_LINK MODE) in the case
of sticky subscription dependencies and/or non-subscription
upwardly declared dependencies. Of course, other alternative
embodiments of the invention could use a different structure
to return dependencies.

Contingent Dependencies

In one embodiment of the invention, both non-contingent
and contingent producer dependencies are supported. A non-
contingent producer dependency is one that is independent of
the output of other producers, while a contingent producer
dependency is one that is dependent on the output of other
producers. While one embodiment of the invention supports
both non-contingent and contingent producer dependencies,
alternative embodiments support only non-contingent or con-
tingent (which contingent producer dependencies may be
initially driven by default values).

As previously discussed, a producer can be viewed as a set
of multiple identifiers, one identifier for each additional level
of granularity specified. In one embodiment of the invention,
a contingent producer dependency can be contingent in the
sense that any one or all of the set of identifiers can be
conditionally determined based on current data values. For
instance, a first contingent producer dependency may have
only the instance identifier be conditionally determined (the
class and method identifiers are fixed), while a second con-
tingent producer dependency may have the class, instance,
and method identifiers be conditionally determined. While in
one embodiment of the invention, all of the plurality of iden-
tifiers of a contingent producer dependency may be condi-
tional, alternative embodiments of the invention may be
implemented differently (e.g., only allow a subset of the
plurality of identifiers to be conditional).

US 9,424,050 B2

59

FIGS. 13A-]J are block diagrams illustrating pseudo code
and exemplary producers according to one embodiment of the
invention. In addition, the embodiments shown in FIG. 13A-J
use the same dependency determination mechanism for both
contingent and non-contingent dependencies. As such, for
explanation purposes, some of the examples in FIGS. 13A-]
are examples of non-contingent dependencies, while the oth-
ers are examples of contingent producer dependencies. Fur-
ther, a non-contingent producer dependency is one in which
the dependency is to a dependency determination producer
that is an independent producer (e.g., in one embodiment of
the invention, the dependency type is identifiable because its
producer dependency declaration is empty); while a contin-
gent producer dependency is one in which the dependency is
to a dependency determination producer that is a dependent
producer (e.g., in one embodiment of the invention, the
dependency type is identifiable because its producer depen-
dency declaration is non-empty).

Further, circled numbers and letters are used in FIGS.
13A-] to illustrate the order in which operations are per-
formed according to one embodiment of the invention. Also,
a notation X::Y::Z is used in FIGS. 13A-J to represent a
producer key made up of a class key (X), an instance key (Y),
and a method key (7). Further dashed circles and arrowed
lines represent operations that are not performed in some
embodiments of the invention. In particular, where the execu-
tion of an independent dependency determination producer
for a given dependency will always return the same depen-
dency (e.g., an independent dependency determination pro-
ducer), such dependency determination producer in some
embodiments of the invention is executed but not instantiated
and linked in the producer graph(s).

Explicit Dependency Determination Producers

FIG. 13A illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, non-
dynamic (non-contingent, non-subscription) dependency
according to one embodiment of the invention; while FIG.
13B is a block diagram of producers illustrating an exemplary
non-shortcut declared, non-dynamic (non-contingent, non-
subscription) producer dependency according to one embodi-
ment of the invention. FIG. 13 A shows: 1) a producer depen-
dency declaration statement 1300 for a method alpha 1305,
where the producer dependency declaration statement 1300
includes a producer dependency to a producer CW:IY::
BETA; and 2) a producer dependency declaration statement
1310 for a method beta 1315, where the producer dependency
declaration statement 1310 is empty, and where the method
beta 1315 returns as an argument an instance of the class DEP.
The method beta 1315 includes producer dependency decla-
ration code 1320 that sets DEPTYPE to non-subscription
downwardly declared, sets DEP.PROD to producer 13, and
returns DEP.

In FIG. 13A, acircled 1 indicates that the producer depen-
dency declaration 1300 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305, as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13B shows that
a producer C0::10:: ALAPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 13A indicates that the
producer dependency to producer CW:IY::BETA is pro-
cessed to determine the producer dependency, and as a result,
acircled 4 indicates that the producer dependency declaration
1310 is accessed. A dashed circled 5 in FIG. 13B shows that
a producer CW::I1Y::BETA is instantiated as a dependency
determination producer 1380. A dashed circled 6 in FIG. 13B
indicates that the producer C0::10:: ALPHA is linked in the

10

15

20

25

30

35

40

45

50

55

60

65

60

producer graph to indicate that producer CW::1Y::BETA is a
child producer. A circled 7 in FIG. 13B indicates that the
producer CW::IY::BETA is executed and returns DEP to
identify producer 13. A circled 8 indicates producer 13 is
instantiated, while a circled 9 indicates the producer 13 being
linked as a child producer in the producer graph to the pro-
ducer C0::10:: ALPHA. In FIG. 13B, producer C0::10::AL-
PHA and producer 13 are standard producers 1385 (they are
not dependency determination producers).

FIG. 13C illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, con-
tingent, non-subscription producer dependency according to
one embodiment of the invention; while FIG. 13D is a block
diagram of producers illustrating an exemplary non-shortcut
declared, contingent, non-subscription producer dependency
according to one embodiment of the invention. In addition,
FIG. 13D refers to the producers 5, 7A, and 7B of FIG. 5A and
the resolution of the dynamic dependency of producer 5 to the
producer 7A.

FIG. 13C shows: 1) a producer dependency declaration
statement 1300 for a method alpha 1305, where the producer
dependency declaration statement 1300 includes a producer
dependency to a producer CW::IY::BETA; 2) a producer
dependency declaration statement 1325 for a method beta
1315, where the producer dependency declaration statement
1325 includes a producer dependency to a producer CU::1V::
DELTA, and where the method beta 1315 returns as an argu-
ment an instance of the class DEP; 3) a producer dependency
declaration statement 1332 for a method delta 1334, where
the producer dependency declaration statement 1332 is
empty, and where the method delta 1334 returns as an argu-
ment an instance of the class DEP; and 4) a producer depen-
dency declaration statement 1338 for a method gamma 1340,
where the producer dependency declaration statement 1338 is
empty, and where the method gamma 1340 returns a variable
X (where X is from an external source, a default value (ex-
plicit or constant in the class). The method beta 1315 includes
producer dependency declaration code 1330 that sets
DEP.TYPE to non-subscription downwardly declared, sets
DEP.PROD to producer 7A or 7B depending on the output of
producer CX::17Z::GAMMA, and returns DEP. The method
delta 1332 includes producer dependency declaration code
1336 that sets DEPTYPE to non-subscription downwardly
declared, sets DEP.PROD to the producer CX::17:: GAMMA,
and returns DEP.PROD.

In FIG. 13C, a circled 1 indicates that the producer depen-
dency declaration 1300 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13D shows that
the producer 5 is instantiated based on the method alpha 1305.
A circled 3 in FIG. 13C indicates that the producer depen-
dency to producer CW::IY::BETA is processed to determine
the producer dependency, and as a result, a circled 4 indicates
that the producer dependency declaration 1325 is accessed. A
circled 5 in FIG. 13D shows that a producer CW::1Y::BETA is
instantiated as a dependency determination producer 1380. A
circled 6 in FIG. 13D indicates that the producer 5 is linked in
the producer graph to indicate that producer CW::1Y::BETA
is a child producer.

A circled 7 in FIG. 13C indicates that the producer depen-
dency to producer CU::IV::DELTA is processed to determine
the producer dependency, and as a result, a circled 8 indicates
that the producer dependency declaration 1332 is accessed. A
dashed circled 9 in FIG. 13D shows that a producer CU::IV::
DELTA is instantiated as a dependency determination pro-

US 9,424,050 B2

61

ducer 1380. A dashed circled 10 in FIG. 13D indicates that the
producer CW::IY::BETA is linked in the producer graph to
indicate that producer CU::IV::DELTA is a child producer. A
circled 11 in FIG. 13D indicates that the producer CU::IV::
DELTA is executed and returns DEP to identify CX::1Z::
GAMMA. A circled 12 indicates that the producer CX::1Z::
GAMMA is instantiated, while a circled 13 indicates the
producer CX::1Z::GAMMA being linked as a child producer
in the producer graph to the producer CW::1Y::BETA.

In FIG. 13D, a circled A indicates that the producer CX::
17::GAMMA is executed and returns X to producer CW::1Y::
BETA, while a circled B indicates that the producer CW::IY::
BETA returns DEP to identify producer 7A; a circled C
indicates that the unresolved remainder (method beta) 1390 is
now resolved and producer 7A is instantiated, while a circled
D indicates the linking of the producer 5 to the producer 7A.
In FIG. 13D, producers CX::1Z::GAMMA, 5, and 7A are
standard producers 1385.

On the Fly Dependency Determination Producers

FIG. 13E illustrates pseudo code of producer dependency
declarations for methods using both a non-shortcut declared,
contingent, non-subscription producer dependency and a
shortcut declared, contingent, non-subscription producer
dependency according to one embodiment of the invention;
while FIG. 13F is a block diagram of producers illustrating a
non-shortcut declared, contingent, non-subscription pro-
ducer dependency and a shortcut declared, contingent, non-
subscription producer dependency according to one embodi-
ment of the invention. Similar to FIGS. 13D, FIG. 13F refers
to the producers 5, 7A, and 7B of FIG. 5A and the resolution
of'the dynamic dependency of producer 5 to the producer 7A.

FIGS.13E-F are the same as FIGS. 13C-D, with the excep-
tions: 1) a producer dependency declaration statement 1342
replaces the producer dependency declaration statement
1325; 2) a method fly 1344 replaces the method delta 1334;
and 3) a producer CW::1Y::FLY replaces the producer CU::
IV::DELTA. The producer dependency declaration statement
1342 includes a shortcut declared producer dependency to the
CX::1Z::GAMMA. Thus, the circled 4 in FIG. 13E now indi-
cates that the producer dependency declaration 1342 is
accessed. The circled 7 in FIG. 13E now indicates that the
shortcut declared producer dependency to producer CX::1Z::
GAMMA is processed to determine the producer depen-
dency, and as a result, the runtime invokes the dependency
determination producer CW::IY::FLY on the fly based on the
method fly 1344. The circled 8 now indicates that the pro-
ducer dependency declaration 1332 is accessed. The dashed
circled 9 in FIG. 13F now shows that the producer CW::1Y::
FLY is instantiated. The dashed circled 10 in FIG. 13F indi-
cates that the producer CW::1Y::BETA is linked in the pro-
ducer graph to indicate that producer CW::IY::FLY is a child
producer. The circled 11 in FIG. 13F indicates that the pro-
ducer CW::IY::FLY is executed and returns DEP to identify
CX::1Z::GAMMA. The remainder of FIGS. 13E-F is the
same as FIGS. 13C-D.

The on the fly generation by the runtime of the dependency
determination producer CW::IY::FLY alleviates the applica-
tion programmer from having to write explicit producer
dependency declaration code and instantiate a dependency
determination producer based thereon. Further, it allows the
application programmer to directly specify the dependency
on producer CX::1Z::GAMMA in the producer dependency
declaration statement for the method beta 1315, as opposed to
specifying the dependency determination producer CU::1V::
DELTA.

The shortcut technique can be used in a variety of situa-
tions, and may additionally have a variety of formats. For

10

15

20

25

30

35

40

45

50

55

60

65

62

example, while in FIGS. 13E-F the shortcut declared depen-
dency is for a non-contingent dependency (it directly identi-
fies the child producer) and is in a producer dependency
declaration statement for a method on which a dependency
determination producer is based, other situations and formats
are shown as follows: 1) FIGS. 13G-H illustrate the use of two
shortcuts, where one is contingent and is part of a producer
dependency declaration statement for a method on which a
standard producer is based and the other is non-contingent
and is part of a producer dependency declaration statement
for a method on which a dependency determination producer
is based; and 2) FIGS. 131-J illustrate the use of a shortcut that
is non-contingent and that is in a producer dependency dec-
laration statement for a method on which a parent standard
producer is based.

FIG. 13G illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, contin-
gent, non-subscription producer dependency and a shortcut
declared, non-contingent, non-subscription producer depen-
dency according to one embodiment of the invention; while
FIG. 13H is a block diagram of producers illustrating an
exemplary shortcut declared, contingent, non-subscription
producer dependency and a shortcut declared, non-contin-
gent, non-subscription producer dependency according to
one embodiment of the invention. FIG. 13G shows: 1) a
producer dependency declaration statement 1345 for the
method alpha 1305, where the producer dependency declara-
tion statement 1345 includes a shortcut declared, contingent
producer dependency to a producer <P>GETC1::11::M1;2) a
producer dependency declaration statement 1350 for a
method flyl 1355, where the producer dependency declara-
tion statement 1350 includes a shortcut declared, non-contin-
gent producer dependency to a producer C0::10:: GETC1, and
where the method flyl 1355 returns as an argument an
instance of DEP; 3) the producer dependency declaration
statement 1332 for amethod fly2 1362, where the method fly2
1362 returns as an argument an instance of DEP; and 4) the
producer dependency declaration statement 1365 for a
method getcl 1370, where the method getcl 1370 returns C1
with a value of CX or CY.

The method FLY1 1355 and its producer dependency dec-
laration statement 1350 are provided by the runtime respon-
sive to the shortcut declared dependency <P>GETC1::11::M1
(which indicates that the shortcut is being used for the class
key). The method flyl 1355 includes producer dependency
declaration code 1360 that sets DEP.TYPE to non-subscrip-
tion downwardly declared, sets DEP.PROD to producer CX::
11::M1 or CY::11::M1 depending on the value of C1 output by
the producer C0::10:: GETC1, and returns DEP. While in the
example of FIG. 13H, a <P>is used to designate that it is the
class key of the producer that is contingent, alternative
embodiments of the invention could use other syntaxes. Fur-
ther, while in the example of FIG. 13H, a <P> is used to
designate that it is the class key of the producer that is con-
tingent, one embodiment of the invention supports having
more and/or different ones of the identifiers that make up the
producer key be indicated as contingent in this manner.

In FIG. 13G, acircled 1 indicates that the producer depen-
dency declaration 1345 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13H shows that
the producer CO0::10::ALPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 13G indicates that the
shortcut declared producer dependency is processed to deter-
mine the producer dependency and the runtime provides the

US 9,424,050 B2

63

method fly1 1355; and as a result, a circled 4 indicates that the
producer dependency declaration 1350 is accessed.

A circled 5 in FIG. 13H shows that a producer C0::10::
FLY1 is instantiated as a dependency determination producer
1380. A circled 6 in FIG. 13H indicates that the producer
C0::10:: ALPHA is linked in the producer graph to indicate
that producer C0::10::FLY1 is a child producer. A circled 7 in
FIG. 13G indicates that the shortcut declared producer depen-
dency to producer C0::10::GETC1 is processed to determine
the producer dependency and the runtime provides the
method fly2 1362, and as a result, a circled 8 indicates that the
producer dependency declaration 1332 is accessed. A dashed
circled 9 in FIG. 13H shows that a producer C0::10::FLY2 is
instantiated. A dashed circled 10 in FIG. 13H indicates that
the producer C0::10::FLY1 is linked in the producer graph to
indicate that producer C0::10::FLY2 is a child producer.

A circled 11 in FIG. 13H indicates that the producer CO0::
10::FLY2 is executed and returns DEP to identify producer
C0::10::GETC1. A circled 12 indicates that the producer CO::
10::GETC1 is instantiated, while a circled 13 indicates that
the producer C0::10::GETC1 being linked in the producer
graph to the producer C0::10::FLY1 as a child producer.

In FIG. 13H, a circled A indicates that the producer CO0::
10::GETC1 is executed and returns C1=CX to producer C0::
10::FLY1, while a circled B indicates that the producer C0::
10::FLY1 is executed and returns DEP to identify producer
CX::11::M1; a circled C indicates that the unresolved remain-
der (method flyl) 1390 is now resolved, and a circled D
indicates the linking of the producer C0::10:: ALPHA to the
producer CX::I1::M1. In FIG. 13H, producers C0::10::
GETC1, C0::10:: ALPHA, and CX::11::M1 are standard pro-
ducers 1385.

The on the fly generation by the runtime of the dependency
determination producer C0::10::FLY1 and C0::10::FLY?2 alle-
viates the application programmer from having to write
explicit producer dependency declaration code and instanti-
ate dependency determination producers based thereon. Fur-
ther, it allows the application programmer to directly specify
the contingent dependency on a producer **::11::M1 through
the method getC1 in the producer dependency declaration
statement for the method alpha 1305, as opposed to specify-
ing the dependency determination producer CW::IY::BETA.

FIG. 131 illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, non-dy-
namic (non-contingent, non-subscription) producer depen-
dency according to one embodiment of the invention; while
FIG. 13] is a block diagram of producers illustrating an exem-
plary shortcut declared, non-dynamic producer dependency
according to one embodiment of the invention. FIG. 131
shows: 1) a producer dependency declaration statement 1372
for a method alpha 1305, where the producer dependency
declaration statement 1372 includes a shortcut declared pro-
ducer dependency to a producer 10; and 2) a producer depen-
dency declaration statement 1374 for a method fly 1376,
where the producer dependency declaration statement 1374 is
empty, and where the method fly 1376 returns as an argument
an instance of DEP. The method fly 1776 and its producer
dependency declaration statement 1374 are provided by the
runtime responsive to the shortcut declared dependency. The
method fly 1376 includes producer dependency declaration
code 1378 that sets DEP.TYPE to non-subscription down-
wardly declared, sets DEP.PROD to producer 10, and returns
DEP.

In FIG. 13, a circled 1 indicates that the producer depen-
dency declaration 1372 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a

10

15

20

25

30

35

40

45

50

55

60

65

64

producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13] shows that
a producer CO0::10::ALPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 131 indicates that the
shortcut declared producer dependency is processed to deter-
mine the producer dependency and the runtime provides the
method fly 1376; and as a result, a circled 4 indicates that the
producer dependency declaration 1374 is accessed. A dashed
circled 5 in FIG. 13] shows that a producer C0::10::FLY is
instantiated as a dependency determination producer 1380. A
dashed circled 6 in FIG. 13] indicates that the producer C0::
10::ALPHA is linked in the producer graph to indicate that
producer C0::10::FLY is a child producer.

A circled 7 in FIG. 13] indicates that the producer C0::10::
FLY is executed and returns DEP to identify producer 10. A
circled 8 indicates producer 10 is instantiated, while a circled
9 indicates the producer C0::10:: ALPHA being linked in the
producer graph to indicate that producer 10 is a child pro-
ducer. InFIG. 13J, producer C0::10:: ALPHA and producer 10
are standard producers 1385.

It should be understood that the runtime programmer, in
one embodiment of the invention, writes a single fly method
to interpret all supported syntaxes and combinations (e.g., the
method fly 1334, the method fly1 1355, the method fly2 1362,
the method fly 1376) and includes it in the runtime. This not
only allows applications programmers to avoid writing code
for dependency determination producers where a fly method
may be used, the runtime programmer need only write the
generic fly method (the single fly for all supported situations)
once. Further, it should be understood that shortcut declared
dependencies allow for a runtime that uses dependency deter-
mination producers while at the same time allowing an appli-
cation programmer to indicate standard producers in the pro-
ducer dependency declarations (e.g., FIGS. 13G-J).

Method Tracking Structure

Referring back to the method tracking structure of FIG.
11D, exemplary contents of the ArgumentDependencies col-
umn 1194, FieldDependencies column 1196, SequencingDe-
pendencies column 1195, UpwardDependencies column
1193, and WeaklyConstrainedDependencies column 1199
used in some embodiments of the invention will now be
described. Specifically, the ArgumentDependencies column
1194 stores a collection of items, one for each ArgumentDe-
pendency. In one embodiment of the invention, each item
includes the following: 1) the argument ID; 2) a class key
nature identifier, being one of explicit class, same class, and
contingent class; 3) an explicit class key identifier populated
when the class key nature identifier indicates explicit class; 4)
contingent class determination method key identifier popu-
lated when the class key nature identifier indicates contingent
class; 5) an instance key nature identifier, being one of explicit
instance, same instance, and contingent instance; 6) an
explicit instance key identifier populated when the instance
key nature identifier indicates explicit instance; 7) contingent
instance determination method key identifier populated when
the instance key nature identifier indicates contingent
instance; 8) a method key nature identifier, being one of
explicit method, same method, and contingent method; 9) an
explicit method key identifier populated when the method key
nature identifier indicates explicit method; 10) contingent
method determination method key identifier populated when
the method key nature identifier indicates contingent method;
and 11) a shortcut identifier that indicates if the producer
dependency declaration for the argument in the producer
dependency declaration statement contained an indication of
shortcut (i.e., the producer dependency declaration statement

US 9,424,050 B2

65

directly identifies a standard child producer instead of a
dependency determination producer).

The “ . . . explicit” indication of the various key nature
identifiers is used where the explicit key is provided for the
producer dependency in the producer dependency declaration
statement. By way of example, the producer dependency
“CW:uIY::BETA” of the producer dependency declaration
statement 1300 of FIG. 13A provides an explicit class,
instance, and method key.

In some embodiments of the invention, a shorthand tech-
nique is supported for the producer dependency declaration
statements such that: 1) if a class is not provided for a given
producer dependency, then the same class as the parent pro-
ducer is used; and 2) if a class and instance are not provided
for a given producer dependency, then the same class and
instance as the parent producer are used. In other embodi-
ments of the invention, a syntax is used to allow any combi-
nation of class, instance, and method, to be the same as the
parent (with the exception of all being the same) (e.g., a
separator is used to designate each of class, instance, and
method, and an absence of such a separator indicates same as
parent—by way of specific example, the syntax may be
“HC:”, “#1:”, and “#M:”, such that a producer dependency in
a producer dependency declaration statement may be
#C:“class key”:#[:“instance key”::#M:“method key”.)
(where quotes indicate a placeholder for a value or variable)
The“...same” indication of the various key nature identifiers
is used where this shorthand technique is used in the producer
dependency declaration statement.

As previously indicated, in some embodiments of the
invention an indication of a contingent producer dependency
is supported through a syntax (e.g., <P>) used in the producer
dependency declaration statement itself (see 1345 of FIG.
13G), and such syntax can be used on one or more of the class,
instance, and method of a producer dependency. The . . .
contingent” indication of the various key nature identifiers is
used to identify when such a contingent producer dependency
occurs, while the “contingent . . . determination method key
identifier” indicates the method key of the child producer (the
class and the instance are the same as that of the parent
producer). By way of example, the producer dependency
“<P>GETC1::11::M1” for the producer dependency declara-
tion 1345 of FIG. 13G provides a contingent class (where the
contingent class determination method key is GETC1), an
explicit instance key, and an explicit method key.

The SequencingDependencies column 1195, the Upward-
Dependencies column 1193, and the WeaklyConstrainedDe-
pendencies column 1195 each store a collection of items, one
for each SequencingDependency, UpwardDependency, and
WeaklyConstrainedDependency. In one embodiment of the
invention, each such item has the same structure as an item of
the collection for the ArgumentDependencies, except that it
does not include an argument ID. Further, although FIGS.
13A-] illustrated non-subscription downwardly declared
dependencies originating from dependency determination
producers, it should be understood that in the case of an
upwardly declared dependency or weakly constrained depen-
dency the dependency determination producer may return the
other dependencies discussed with reference to FIG. 7F-G.

The FieldDependencies column 1196 stores a collection of
items, one for each FieldDependency. While in one embodi-
ment of the invention each item includes the property method
key, in alternative embodiments of the invention may have the
same structure as an item of the collection from Sequenc-
ingDependencies.

10

15

20

25

30

35

40

45

50

55

60

65

66

Subscription Dependencies

In one embodiment of the invention, both non-subscription
and subscription producer dependencies are supported. When
a subscription producer dependency is declared for a given
method and a given producer is instantiated from that given
method, the runtime can resolve during run time (based upon
the existence of other producers) the set of zero or more
producers that meet the criteria of the subscription. While one
embodiment of the invention supports both non-subscription
and subscription producer dependencies, alternative embodi-
ments support only non-subscription. In addition, while in
one embodiment of the invention two types of subscription
dependencies are supported (absorbing and sticky), alterna-
tive embodiments of the invention support more, less, and/or
different types of subscription producer dependencies.

FIGS. 14A-C are block diagrams illustrating absorbing
and sticky subscriptions according to one embodiment of the
invention. FIG. 14A is a block diagram of an example of the
subscription log 1250 of FIG. 12B according to one embodi-
ment of the invention. While FIG. 14A illustrates this log
structure as a table, it should be understood that any suitable
data structure may be used (e.g., a hash map). FIG. 14B is a
block diagram of exemplary producers illustrating a non-
contingent, absorbing subscription producer dependency
according to one embodiment of the invention. FIG. 14C is a
block diagram of exemplary producers illustrating a non-
contingent, sticky subscription producer dependency accord-
ing to one embodiment of the invention. Two rows are shown
in the table of FIG. 14A populated with content used in the
examples of FIGS. 14B-C. Circled numbers are used in FIGS.
14B-C to illustrate the order in which operations are per-
formed according to one embodiment of the invention.

In FIG. 14A, a subscriber’s producer key column 1400, a
subscription type column 1405, and a subscription criteria for
trigger producers column 1410 are shown to respectively
store the content corresponding to the column name. In addi-
tion, FIG. 14A shows a parent link modecolumn 1425 to store
the link mode for the parent producer of the subscription
dependency; this information will be described in more detail
with regard to FIGS. 14B-C.

FIG. 14A also shows a matching producers column 1415
and a completed column 1420 used for absorbing subscrip-
tions. The matching producers column 1415 is used to store
the producer keys of the trigger producers that meet the sub-
scription criteria of the absorbing subscription, while the
completed column 1420 is used to track whether the absorb-
ing subscription has been completed during a given execution
of'the current set of producer graphs. The matching producers
column 1415 and the completed column 1420 provide an
additional optional optimization that allows for the work of
scanning the instantiated producers to be divided between the
automated producer graph generation and the producer graph
execution as described later herein.

FIG. 14A also shows a parent class column 1430, a parent
method column 1435, and a parent instance column 1437
used for sticky subscriptions. The parent class column 1430,
the parent method column 1435, and the parent instance
column 1437 respectively store the class key, method key, and
instance key of the parent producer to be created for the sticky
subscription. In addition, FIG. 14A shows a dependency
determination producer reference column 1421 store a refer-
ence to the dependency determination producer creates the
subscription.

Absorbing Subscription

In an absorbing subscription producer dependency, the
dependency is to the collection of all producers of the current
producer graph structure that meet the absorbing subscription

US 9,424,050 B2

67

criteria. With reference to FIG. 14B, a circled 1 indicates a
producer 1450 is instantiated (e.g., as a result of designation
of the producer 1450 as a producer of interest, as a result of
automated discovery of the producer 1450 as a progeny of a
producer of interest, etc.). The producer 1450 is based on a
method for which the producer dependency declaration
includes a producer dependency (e.g., with argument ID X).
A circled 2 indicates the producer dependency of the producer
1450 is processed to identify a producer 1455.

A circled 3 indicates that the producer 1450 is linked (in the
above example, through argument ID X) in the producer
graph to producer 1455 as a child producer. A circled 4
indicates execution of the producer 1455. The producer 1455
is a dependency determination producer that includes pro-
ducer dependency declaration code indicating an absorbing
subscription producer dependency and indicating the absorb-
ing subscription criteria. As such, the execution of the pro-
ducer 1455 results in populating the subscription log. With
regard to the example in the first row of FIG. 14 A, the sub-
scriber’s producer key column 1400, the subscription type
column 1405, the subscription criteria for trigger producers
column 1410, the parent link mode column 1425, and the
dependency determination producer reference column 1421
are respectively populated with the producer key of the pro-
ducer 1450, an indication that the subscription is of the
absorbing type, the absorbing subscription criteria contained
within the producer 1455, the link mode of the producer 1450
linked to the producer 1455 (which, in the case of an absorb-
ing subscription will be an argument dependency and include
an argument 1D, but whose sticky indicator will indicate not
sticky—in the above example, argument ID X), and a refer-
ence to the producer 1455 (the dependency determination
producer that cerates the subscription).

Circled 5A-N indicates the instantiation of producers
1460A-N. In this example, the producers 1460A-N meet the
absorbing subscription criteria, and thus are trigger produc-
ers. As such, circled 6A-N indicates the linking of the pro-
ducer 1450 to the producers 1460A-N (in the above example,
through argument ID X). A circled 7 indicates that the absorb-
ing subscription dependency is completed for the current
execution of the producer graph(s), and the producer 1450 is
then executed.

In one embodiment of the invention, the absorbing sub-
scription criteria can be one or more of any of the keys making
up a producer key. Thus, in embodiments of the invention
where a producer key comprises a class key, instance key, and
a method key, the subscription criteria could be one or more
such keys. By way of example with reference to FIG. 11C, a
scan through the instantiated producers for those that meet the
subscription criteria is a scan through one or more of the first
three columns of the producer graph(s) structure to determine
if the keys of the instantiated producers match the keys of the
absorbing subscription criteria. While in one embodiment of
the invention the absorbing subscription criteria can be one or
more of any of the keys making up a producer key, in alter-
native embodiments of the invention the absorbing subscrip-
tion criteria is limited to a subset of the keys making up a
producer key.

Sticky Subscription

In a sticky subscription producer dependency, the depen-
dency causes a parent producer to be instantiated for each
producer that meets the sticky subscription criteria. With
reference to FIG. 14C, a circled 1 indicates a producer 1470 is
instantiated (e.g., as a result of designation of the producer
1470 as a producer of interest, as a result of automated dis-
covery of the producer 1470 as a progeny of a producer of
interest through a sequencing dependency (e.g., as a result of

20

25

40

45

68

a SequencingDependency or WeaklyConstrainedDepen-
dency, etc.). The producer 1470 is a dependency determina-
tion producer that includes producer dependency declaration
code indicating a sticky subscription, the sticky subscription
criteria for the trigger producers, and the sticky subscription
characteristics for the parent producer to be created.

Execution of the producer 1470 results in populating the
subscription log. With regard to the example in the second
row of FIG. 14 A, the subscriber’s producer key column 1400,
the subscription type column 1405, and the subscription cri-
teria for trigger producers column 1410 are respectively
populated with the producer key of the producer 1470, an
indication that the subscription is of the sticky type, and the
sticky subscription criteria for the trigger producers con-
tained within the producer 1470. In addition, the parent class
column 1430, the parent method column 1435, the parent
instance column 1437, and the link mode column 1425 of the
parent producer to be linked to the trigger producer are popu-
lated with the sticky subscription characteristics for the par-
ent producer to be created—in this embodiment of the inven-
tion, respectively the class of the parent producer to be
instantiated, the method of the parent producer to be instan-
tiated, the instance of the parent producer to be instantiated (if
left blank, would be equal to the instance key of the trigger
producer), the link mode (which, in the case of sticky sub-
scription, may be: 1) argument, field, or sequencing depen-
dency; 2) argument ID if an argument dependency—the argu-
ment ID of the parent producer to be linked to the trigger
producer (e.g., argument IDY). In addition, the dependency
determination producer reference column 1421 is populated
with a reference to the dependency determination producer
that created the subscription (in FIG. 14C, the producer
1470).

With reference to FIG. 14C, a circled 2 indicates a producer
1475 is instantiated (e.g., as a result of designation of the
producer 1475 as a producer of interest, as a result of auto-
mated discovery of the producer 1475 as a progeny of a
producer of interest, etc.). In addition, it is determined if the
producer 1475 meets the sticky subscription criteria for a
trigger producer. A circled 3 indicates that responsive to the
trigger producer 1475, a producer 1480 is instantiated based
on the sticky subscription characteristics for the parent pro-
ducer to be created. With reference to the exemplary second
row of FIG. 14C, the class key, method key, instance key, and
link mode are accessed from the parent class column 1430,
the parent method column 1435, the instance column 1437,
and the parent link mode column 1425, respectively. The
parent producer has a producer key comprising the accessed
class key, the accessed instance key (if left blank, the instance
key of the trigger producer (in F1G. 14C, the producer 1475)),
and the accessed method key—in the example of FIG. 14C,
this is producer 1480. A circled 4 indicates that the instanti-
ated parent producer 1480 is linked in the producer graph to
the child trigger producer 1475 through the accessed link
mode (in the above example, link mode type=argument
dependency; link mode argument ID=Y). Also at circled 4, in
the case of an argument dependency, the sticky indicator is set
to indicate sticky—that the producer dependency in that posi-
tion of the producer dependency declaration statement for the
method on which the instantiated parent producer 1480 is
based should be ignored for the producer 1480—this prevents
the link created by the sticky subscription producer depen-
dency from being overwritten by later automated producer
graph generation operations

Inone embodiment of the invention, the sticky subscription
criteria for trigger producers can be one or more of the keys
making up a producer key. Thus, in embodiments where a

US 9,424,050 B2

69

producer key comprises a class key, instance key, and a
method key, the sticky subscription criteria for the trigger
could be one or more of the class, instance, and method keys.
By way of example with reference to FIG. 11C, a scan
through the instantiated producers for those that meet the
sticky subscription criteria for trigger producers is a scan
through one or more of the first to third columns of the
producer graph(s) structure to determine if the keys of the
instantiated producers match the keys of the sticky subscrip-
tion criteria for trigger producers. While in one embodiment
of the invention the sticky subscription criteria for trigger
producers can be one or more of the keys making up a pro-
ducer key, in alternative embodiments of the invention the
absorbing subscription criteria can be a more limited number
of the keys making up a producer key.

FIGS. 14D-E illustrate the choice of a parent producer
based upon a parent dependency determination producer
according to one embodiment of the invention. While FIGS.
14D-E are described with reference to argument dependen-
cies, embodiments of the invention may support the use of
sequencing and field dependencies.

FIG. 14D illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a sticky subscription according to one embodiment of the
invention. Like FIG. 14C, FIG. 14D shows the sticky sub-
scription producer 1470 and the trigger producer 1475; how-
ever, rather than the producer 1480, FIG. 14D shows a depen-
dency determination producer 1480 created through the
sticky subscription of sticky subscription producer 1470. Fur-
ther, FIG. 14D shows that the link mode of the sticky sub-
scription is argument dependency, argument ID=X; and
sticky indicator=sticky. As illustrated by the dashed curved
line from the producer 1475 to the dependency determination
producer 1480, the DEP returned by the dependency deter-
mination producer may be based on the output of the producer
1475 itself (the argument of argument ID=X). In FIG. 14D,
the dependency determination producer 1480 returns an non-
subscription upwardly declared producer dependency on a
producer 1482, with the link mode indicating argument
dependency and argument ID=Y. While the argument IDs of
X andY are used in FIG. 14D to show that they may differ, it
should be understood that they may be equal.

FIG. 14E illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a child dependency determination producer, which child
dependency determination producer is linked by a sequenc-
ing dependency, according to one embodiment of the inven-
tion. FIG. 14E is similar in structure to FIG. 14D; specifically,
the producer 1475, 1480, and 1482 are replaced with produc-
ers 1486, 1496, and 1498. However, rather than the sticky
subscription producer 1470 creating the link between the
producers 1480 and 1475, the producer 1486 has a sequenc-
ing dependency on a dependency determination producer
1494 (e.g., created through an UpwardDependency or a
WeaklyConstrainedDependency), which creates the depen-
dency determination producer 1496 through a non-subscrip-
tion upwardly declared dependency.

It is worth nothing that sticky subscriptions and non-sub-
scription upwardly declared dependencies (e.g., created
through UpwardDependencies and/or WeaklyConstrained-
Dependencies) cause a bottom up building of a producer
graph (as opposed to the top down building described earlier
herein). Further, this bottom up building is not limited to the
building of a single level, but may be multiple level (e.g., if,
due to a sticky subscription or non-subscription upwardly
declared dependency, a parent producer is instantiated, that
same parent producer may also be a trigger producer for a

15

25

30

40

45

70

sticky subscription or may include a non-subscription
upwardly declared dependency and cause the instantiation of
another parent producer, and so on). In this sense, sticky
subscriptions, as well as non-subscription upwardly declared
dependencies, reverse producer graph building.

While in some embodiments of the invention the parent
producers identified by the sticky subscription characteristics
are standard producers (see FIG. 14C), alternative embodi-
ments may be implemented to support the identification of
other types of producers. For example, in embodiments of the
invention that allow the sticky subscription characteristics to
identify a dependency determination producer (see FIG.
14D), such a dependency determination producer may access
the output of the trigger producer and may, based on that
output, trigger the creation of a particular producer as a parent
producer that needs to stick on the child (this parent producer
might already exist or not; If it already exists, it is simply
linked, and the child producer is added to its argument; If is
does not exist yet, it is created). The case where the depen-
dency determination producer returns a constant producer
mimics an absorbing subscription. The case where the depen-
dency determination producer returns a producer whose
instance key is unique per trigger producer (e.g., returns a
producer whose instance key is the producer key of the trigger
producer) results in a separate parent producer per child pro-
ducer and is referred to as a pure sticky subscription. The case
where the dependency determination producer returns an
instance key which is neither constant nor unique per trigger
producer can mix the behaviors of pure sticky subscriptions
and absorbing subscriptions and is referred to as a non-pure
sticky subscription.

Exemplary Advantages

As previously described, in one embodiment of the inven-
tion, producer dependencies are declared for methods as a
way to specify method invocation sequencing using the
appropriate instances (where the appropriate instances
include the instances to use as arguments, the instances to be
used by instance methods, and the meta class instances used
by class methods) without using manual invocation sequenc-
ing code; effectively, the work of generating some or all of
manual invocation sequencing code is replaced with: 1) work
done by the application programmer to write the producer
dependency declarations; and 2) work done by the runtime to
discover and build the producer graph(s) and execute the
producers of that producer graph(s). Although the effort to
write the runtime is relatively great, it needs only be written
once in that it can be used to execute any object-oriented
applications written for the runtime; in contrast, for a typical
application, the effort to write the producer dependency dec-
larations is relatively low in comparison to writing manual
invocation sequencing code.

Non-dynamic producer dependencies provide for a way to
specify unconditional method invocation sequencing code,
and thus avoid the need for writing unconditional manual
invocation sequencing code. Contingent producer dependen-
cies provide for a way to specify conditional processing, and
thus replace the need for writing conditional manual invoca-
tion sequencing code. Supporting producer dependencies that
allow for a collection of producers to be returned provides for
a way to specify the filling of a collection before it is passed
as a parameter, and thus avoid the need for writing multiple
calls in manual invocation sequencing code to fill a collection
before it is passed as a parameter. Supporting subscriptions
provides an environment in which a programmer need not
write specific listening code for each type of object to be
listened to (e.g., in a producer graph oriented programming
spreadsheet, an absorbing subscription may be used to com-

US 9,424,050 B2

71

pute an average of a range of cells (each cell being a producer)
by having the absorbing subscription criteria identify cells
within the range, and re-computing the average every time a
new producer is added to the absorbing subscription; in a
producer graph oriented programming spreadsheet, a sticky
subscription may be used as a currency converter by having
the sticky subscription criteria identify cells holding currency
content and sticky subscription characteristics of sticky pro-
ducer(s) to be instantiated that perform currency conversion
(the producers (holding the converted amounts) created by
the sticky subscriptions would then be available for display in
other cells).

Operation

New Instance Commands

FIG. 15 is a flow diagram for instantiating new instances
according to one embodiment of the invention. As previously
described with reference to FIG. 10, the new class module
1095 of FIG. 10 may be implemented as part of the new
instance module 1098. The flow diagram of FIG. 15 assumes
such an embodiment and is performed by the new instance
module 1098; the part of the flow diagram of FIG. 15 repre-
senting the new class module 1095 is shown as the dashed
block 1580, which includes blocks 1540 and 1550.

Responsive to a new instance command (block 1510), con-
trol passes to block 1520. In block 1520, it is determined if the
instance already exists. If not, control passes to block 1530,
otherwise, the instance need not be instantiated and control
passes to block 1570 in which the flow diagram ends. In one
embodiment that supports instance keys, block 1520 is per-
formed by accessing the instance tracking structure 1065 of
FIG. 10 for the instance key (and class key if instance keys
need not be unique across classes) provided as part of the new
instance command.

In block 1530, it is determined if the class definition of the
instance is already loaded. If not, control passes to block
1540; otherwise, control passes to block 1560. In one
embodiment that supports class keys, block 1540 is per-
formed by accessing the class tracking structure 1092 of FIG.
10 for the class key provided as part of the new instance
command.

In block 1540, the class is loaded and control passes to
block 1550. In block 1550, the class definition would be
stored according to the class key and introspected, including
any producer dependency declaration statements (stored by
method key within the class—see FIG. 11D). From block
1550, control passes to block 1560. With reference to FIG. 10,
the following is performed in blocks 1540 and 1550: 1) the
class would be loaded from the class definitions that include
business logic 1010 into the classes 1054 (this loading results
in the methods and producer dependency declarations of the
class being stored in the method and producer dependency

15

40

45

72
declarations 1056); 2) the class would be added to the class
tracking structure 1092; and 3) the methods would be added
to the method tracking structure 1058. Further, the output
classes of the methods would be loaded.

In block 1560, an instance of the class would be instanti-
ated and stored according to the instance key. With reference
to FIG. 10, the instance would be instantiated into the
instances 1052; and the instance would be added to the
instance tracking structure 1065. From block 1550, control
passes to block 1570 in which the flow diagram ends. In some
embodiments of the invention in which an object-relational
mapping technique is used, data may be loaded from an
external data source to populate the field of the instance as
part of block 1560.

In some embodiments of the invention, classes and
instances may be loaded/instantiated in a manner in which the
runtime with producer graph oriented programming support
is not aware (e.g., in FIG. 9A, if the runtime 915 loads/
instantiates without runtime 910 being aware). In such cases,
embodiments of the invention which also support the instance
key being an instance of the class InstanceKey (which holds
two elements: an instance key nature indicating if the key
identifier is a reference to the instance or another object (such
as a string), and a key identifier which can either be a refer-
ence to the instance, or another object (such as a string)),
blocks 1520 and 1530 inquire whether the instance and class
were instantiated/loaded in a manner in which the runtime
with producer graph oriented programming support is aware.
In cases where the runtime with producer graph oriented
programming support is not aware of an already loaded class,
the class would not be loaded, but the class would be added to
the class tracking structure 1092 and the methods would be
added to the method tracking structure 1058. In cases where
the runtime with producer graph oriented programming sup-
port is not aware of an already instantiated instance, the
instance would not be instantiated, but the instance would be
added to the instance tracking structure 1065.

New Producer and Unoverride Commands

FIG. 16A is a flow diagram for instantiating new producers
and unoverriding producers according to one embodiment of
the invention. With reference to FIG. 10, the flows of FIG.
16A are performed by the automated producer graph genera-
tion module 1040 and the override producer module 1045 (or,
as described with reference to alternative embodiments
regarding FIG. 10, the module that handles overrides and
unoverrides).

Responsive to a new producer command (block 1600),
control passes to block 1605. In one embodiment of the
invention, a new producer command may execute responsive
to a variety of situations. Table 2 below identifies the various
situations and parameters passed according to one embodi-
ment of the invention.

TABLE 2
Dependency
Called Producer (to determination

Caller be created if does producer
Situations Producer not already exist) Call type Link mode reference
Producer of N/A Producer of interest Of interest ~ N/A N/A
interest to be created
Non- Parent Child Non- Caller parent Dependency

subscription
downwardly

declared

subscription producer link determination

downwardly mode producer

declared providing the

dependency

US 9,424,050 B2

73 74
TABLE 2-continued
Dependency
Called Producer (to determination
Caller be created if does producer
Situations Producer not already exist) Call type Link mode reference
Sticky Child Parent (parent Sticky Called parent Dependency
subscription class, method, and producer link determination
instance key from mode from sticky producer
sticky subscription subscription providing the
characteristics for characteristics for dependency
parent producer to parent producer
be created; if to be created
instance key is
blank, instance key
of existing child
caller producer)
Override N/A Producer to be Overridden N/A N/A
overridden
Non- Child Parent Non- Called parent Dependency
subscription subscription producer link determination
upwardly upwardly mode producer
declared declared providing the
dependency

In block 1605, it is determined if the producer already
exists. If not, control passes to block 1610; otherwise, control
passes to block 1670. Block 1605 is performed by accessing
a class, instance, and method identified (e.g., by key and/or
reference) as part of the new producer command. In one
embodiment that supports producer keys, block 1605 is per-
formed by accessing the producer graph(s) structure 1060 of
FIG. 10 for the producer key provided as part of the new
producer command (the producer key in the called producer
column of Table 2).

In block 1610, the new instance module is called with a
new instance command and control passes to block 1615. In
one embodiment of the invention, block 1610 is performed by
calling the flow diagram of FIG. 15 using the instance key
from the producer key in the called producer column of Table
2.

In block 1615, the class definition of the instance of the
producer is accessed and control passes to block 1620. With
reference to FIG. 10, block 1615 is performed by using the
class key from the producer key in the called producer column
of Table 2 to access the appropriate one of the classes 1054
according to the class tracking structure 1092.

In block 1620, the method and producer dependency dec-
laration statement of the producer is accessed and control
passes to block 1623. With reference to FIG. 10, block 1620
is performed by using the method key from the producer key
in the called producer column of Table 2 to access the appro-
priate one of the methods and producer dependency declara-
tions 1056 from the class located in block 1615.

In block 1623, the producer execution mode is determined
and control passes to block 1625. Details of one exemplary
manner in which block 1623 is performed are discussed
below. In some embodiments, a default execution mode is
defined as an annotation at code level. The behavior may be
overridden at run time by the end user or by the client code
through a producer-based configurable decision structure
(e.g., the producer based configurable decision structure 1049
in FIG. 10) on a class basis, a method basis, an instance basis,
or any combination of the above. Moreover, runtime settings
may be provided to enable the runtime to ignore these pro-
gramming annotations or user-defined configurations by
forcing execution to be performed in a predetermined execu-
tion mode, depending on the computing environment (e.g.,

25

30

35

40

45

50

55

60

65

availability of several processors on a single machine, grid
availability, load of processor(s), etc.).

Inblock 1625, the producer is added to the producer graph
and control passes to block 1630. With reference to the
embodiment of the invention in FIG. 11C, the first three
columns are populated.

In block 1630, for each registered subscription, the sub-
scription filtering criteria is processed to determine if the
producer matches. With reference to the embodiment of the
invention in FIG. 14A, a subscription is considered registered
when it is added to the subscription log. Exemplary opera-
tions to register subscription are described later herein. Block
1630 is an optional optimization that allows for the work of
scanning the instantiated producers to be divided between
automated producer graph generation and producer graph
execution. As such, an alternative embodiment of the inven-
tion may not perform block 1630.

In block 1635, the producer is linked into the producer
graph(s) if called due to a dependency. From block 1635,
control passes to block 1640. The manner of performing
block 1635 depends on the situation which resulted in the new
producer command being executed. For example, if the situ-
ation is that this is a producer of interest or a producer being
overridden, then it was not called due to a dependency and
nothing is done. In contrast, if the situation is non-subscrip-
tion downwardly declared, then it was called due to a non-
subscription downwardly declared dependency; and with ref-
erence to the embodiment of the invention in FIG. 11C, the
following is performed: 1) the parent producer(s) link(s) in
column 1150 of the called child producer (the called producer
column of table 2) is modified with a parent producer refer-
ence to the row of the parent caller producer (the caller pro-
ducer column of table 2); and the dependency determination
producer reference (the dependency determination producer
reference column of Table 2); and; 2) the child producer(s)
link(s) column 1160 of the row of the parent caller producer
(the caller producer column of table 2) is modified with a
child producer reference to the row of the called child pro-
ducer (the called producer column of Table 2), a dependency
determination producer reference (the dependency determi-
nation producer reference column of Table 2), and a link
mode (set according to the link mode column of Table 2).

In contrast, if the situation is a sticky subscription, then it
was called due to a trigger producer being identified; and with

US 9,424,050 B2

75

reference to the embodiment of the invention in FIG. 11C, the
following is performed: 1) the parent producer(s) links(s)
column 1150 of the caller child producer (the caller producer
column of table 2) is modified with a parent producer refer-
ence to the row of the parent called producer (the called
producer column of table 2) and the determination depen-
dency producer reference (the dependency determination
producer reference column of Table 2); and 2) the child pro-
ducer(s) link(s) column 1160 of the row of the parent called
producer (the called producer column of table 2) is modified
with a child producer reference to the row of the caller child
producer (the caller producer column of Table 2); 2) a depen-
dency determination producer reference (the dependency
determination producer reference column of Table 2), a link
mode (set according to the link mode column of Table 2) and
a sticky indicator set to indicate sticky. In this respect, the
situation of a non-subscription upwardly declared depen-
dency is handled in a similar fashion to sticky subscription.

In block 1640, the producer is marked as unexecuted and
control passes to block 1645. With reference to the embodi-
ment of the invention in FIG. 11C, the incremental execution
marking column 1180 of the appropriate row is populated
with an unexecuted indication.

In block 1645, it is determined if the producer has any
dependencies and is not overridden. If so, control passes to
block 1650; otherwise, control passes to block 1665. Block
1645 is performed by checking the producer dependency
declaration accessed in block 1620 and the call type column
of Table 2.

In block 1650, for each dependency in the producer depen-
dency declaration that is to be resolved now, the number of
producers is determined and a new producer command is
invoked for each. From block 1650, control passes to block
1655. Different embodiments of the invention determine dif-
ferent types of dependency at different times; the manner of
performing block 1650 in one exemplary embodiment of the
invention will be described later herein.

In block 1655 the producer is added to the execution start
log if all its dependent producers exist and have been
executed. From block 1655, control passes to block 1660.
When, for a given producer instantiated as part of the current
iteration of this flow, block 1655 is performed, then the invo-
cation of another iteration of this flow for a dependent pro-
ducer will return the execution status of the producer (see
block 1660) (e.g., with regard to the embodiment of the inven-
tion of FIG. 11C, the status from the incremental execution
marking column 1180 of the appropriate row(s)). If all the
dependent producer(s) exist and the execution status of all of
the dependent producers is executed, then the producer of the
current iteration is added to the execution start log.

In block 1660, the execution status of the producer is
returned as a parameter.

In block 1665, the producer is added to the execution start
log and control passes to block 1660.

Inblock 1670, similar to block 1635, the producer is linked
into the producer graph(s) if called due to a dependency. From
block 1670, control passes to block 1675. Block 1670 may be
reached for a variety of reasons. For example, block 1670 may
be reached because the producer was previously instantiated
responsive to a producer override command, but not linked
into the producer graph. As another example, block 1670 may
be reached because the producer is already part of a producer
graph and is being added to another (e.g., previously instan-
tiated responsive to being a producer of interest, a progeny of
a producer of interest, etc.).

In block 1675, it is determined if the new producer flow is
called due to an override, to a sticky subscription dependency,

10

15

20

25

30

35

40

45

50

55

60

65

76

or a non-subscription upwardly declared dependency. If so,
control passes to block 1680; otherwise, control passes to
block 1660. Block 1675 is performed by checking the call
type column of Table 2 to see if this is a call for an overridden
producer, a sticky subscription dependency, or a non-sub-
scription upwardly declared dependency.

In block 1680, similar to block 1640, the producer is
marked as unexecuted and control passes to block 1665.
Block 1680 may be reached for a variety of reasons.

Responsive to a producer unoverride command (block
1690), control passes to block 1695. In block 1695, the pro-
ducer is marked as not overridden and control passes to block
1640. With reference to the embodiment of the invention of
FIG. 11C, the producer output caching and override producer
output indications column 1170 of the row of the producer are
accessed and altered to indicate that the producer is no longer
overridden. Continuing this flow, block 1640 would lead to
block 1645, and if the producer had any dependencies, to
block 1650, which would cause the producer graph under the
producer to be discovered and built if it was not already. If the
producer graph under the producer is already discovered and
built, then the invoking of the new producer command will
result in flows going from 1600, to 1605, to 1670, and so on;
further, the returning of the execution status of the producers
of'the graph under the producer in block 1660 will determine
if the producer is added to the execution start log in block
1655. However, if the producer graph under the producer is
not discovered and built, then the invoking of the new pro-
ducer command will result in it being discovered and build
with flows going from 1600, to 1605, to 1610, and so on.

FIG. 16B is a flow diagram for block 1623 of FIG. 16A
according to one embodiment of the invention. Thus, control
flows from block 1620 to block 16231 in block 1623. In block
16231, a runtime execution setting override is checked. Then
it is determined if the runtime execution setting override is
enabled at block 16233. If it is set, then the execution mode is
set according to the runtime execution setting at block 16234.
Otherwise, the producer-based configurable decision struc-
ture for execution mode selection from end user is checked in
block 16235 and control passes to block 16236. At block
16236, it is determined if the end user has made any execution
mode selection. If yes, then the execution mode is set accord-
ing to the setting in the producer-based configurable decision
structure at block 16237. Otherwise, the method definition of
the producer is checked for execution mode defined as an
annotation at code level and the execution mode is set accord-
ing to the annotation at block 16238. From block 16238 or
block 16237, control passes to block 16239 to end the process
within block 1623.

FIG. 17 is a flow diagram for block 1650 of FIG. 16
according to one embodiment of the invention. Thus, control
flows from block 1645 to block 1700 in block 1650. In block
1700, for each dependency in the producer dependency dec-
laration of the producer (one for each ArgumentDependency,
FieldDependency, SequencingDependency, UpwardDepen-
dency, and WeaklyConstrainedDependency), the following
blocks 1705-1745 are performed. With reference to the FIGS.
10 and 11D, the method tracking structure is accessed to
determine information regarding the producer dependency. It
should also be understood that blocks 1715, 1725, 1730,
1740, 1745, and 1750 are an optimization when performed
prior to execution of the producer graph.

In block 1705, it is determined if the dependency is an
argument dependency linked already due to a sticky depen-
dency. If so, control passes to block 1710 where the flow is
complete for this dependency; otherwise, control passes to
block 1715. With regard to the embodiment of the invention

US 9,424,050 B2

77

show in FIG. 11C, the sticky indicator is checked to determine
if the argument ID of this dependency is subject to a sticky
subscription argument dependency or an upwardly declared
argument dependency.

In block 1715, it is determined if the dependency is a
contingent dependency. If so, control passes to block 1720;
otherwise, control passes to block 1725. Block 1715 is per-
formed by checking the producer dependency declaration of
the child producer identified by the dependency to determine
if it is empty (the child producer is and independent pro-
ducer). With regard to FIGS. 13A-J, this would be true for
producers with dashed circled numbers (e.g., in FIG. 13D,
producer CU::IV::DELTA), but not true for the other produc-
ers (e.g., in FIG. 13D, producer CW::1Y::BETA). Thus, with
reference to FIG. 13D, block 1715 is represented by circled 1,
4, and 8. Block 1715 and the flow from it through blocks
1725-1750 is an optimization that both avoid adding/linking
the producers with dashed circled numbers to the producer
graph, as well as dividing the work of executing producers
between the automated producer graph generation and pro-
ducer graph execution.

In block 1720, a new producer command for the depen-
dency determination producer is invoked and the flow ends.
For example, with reference to FIG. 13D, block 1720 causes
what is represented by circled 5, 6, and 7.

In block 1725, the dependency determination producer is
executed and control passes to block 1730. For example, with
reference to FIG. 13D, block 1725 is represented by circled
11 (thus, the flow of FIG. 17 illustrated the previously
described embodiment in which circled 9 and 10 of FIG. 13D
are not performed).

In block 1730, it is determined if the dependency is a
non-subscription dependency. If so, control passes to block
1750; otherwise control passes to block 1740. In other words,
in block 1725, the producer dependency determination code
in the method of the dependency determination producer,
which is part of the producer dependency declaration of the
parent producer, is executed. Having executed this producer
dependency declaration code, which code would identify if
this dependency is a subscription dependency, the type of
producer dependency of the parent producer is determined.
With regard to the example in FIG. 13D, circled 11 would
result in the flow of FIG. 17 passing from block 1730 to block
1750.

In block 1750, the number of producers returned by the
execution of the dependency determination producer in block
1725 is determined and a new producer command is invoked
for each, using the arguments described in Table 2, including
the dependency determination producer reference executed
in 1725. For example, with reference to FIG. 13D, block 1750
would cause circled 12 and 13 and circled C and D.

With reference to the absorbing subscription example of
FIG. 14B, block 1725 represents circled 4; which causes the
flow to pass through block 1730 to block 1740.

In block 1740, the subscription is added to the subscription
log, and if the subscription is absorbing, it is marked as
incomplete. From block 1740, control passes to block 1745.
With reference to the embodiment of the invention shown in
FIG. 14A, the subscription log is populated with the subscrip-
tion as previously described.

In block 1745, all of the instantiated producers are scanned
to see if they match the criteria of the subscription (and thus
are a trigger producer), and any matches are processed.

FIG. 18 is a flow diagram for block 1745 of FIG. 17
according to one embodiment of the invention. Thus, control

10

15

20

25

30

35

40

45

50

55

60

65

78
flows from block 1740 to block 1800 in block 1745. In block
1800, for each instantiated producer, the following blocks
1810-1830 are performed.

In block 1810, it is determined if the producer meets the
criteria of the subscription. If so, control passes to block 1815;
otherwise, control passes to block 1830 where the flow ends
for the producer currently being processed. With reference to
the embodiments of the invention shown in FIGS. 11C and
14A, the producer graph(s) are accessed to determine whether
they include producers that meet the criteria of the subscrip-
tion.

The manner of processing a matching producer depends on
the type of subscription being processed. With reference to
block 1815, if the subscription is of the absorbing type, con-
trol passes to block 1825; otherwise, control passes to block
1820. Block 1815 would be performed responsive to the type
of subscription added in 1740 or 2235.

In block 1825, the matching producer is added to the sub-
scription log and the producer with the absorbing subscrip-
tion is linked to the matching producer. From block 1825,
control passes to block 1830. With reference to the embodi-
ments of the invention shown in FIGS. 11C and 14A-B, the
following is performed: 1) the subscription criteria from the
subscription criteria for trigger producers column 1410 was
used in block 1810 and a matching producer was located (e.g.,
one of producer 1460A-N); 2) the matching produceris added
to the matching producer column 1415 at the row of the
subscription; and 3) the producer with the absorbing sub-
scription (e.g., producer 1450) is linked to the matching pro-
ducer (e.g., the one of the producers 1460A-N) in the pro-
ducer graph(s) structure of FIG. 11C (using the dependency
determination producer reference extracted from the depen-
dency determination producer reference column 1421 of the
subscription log 14A for the given absorbing subscription.

In block 1820, a new producer command is invoked for the
parent producer to be created. From block 1820, control
passes to block 1830 where the flow diagram ends for the
current produced selected in block 1800. With reference to
the embodiments of the invention shown in FIGS. 14A and
14C, the following is performed: 1) the subscription criteria
from the subscription criteria for trigger producers column
1410 was used in block 1810 and a matching producer was
located (e.g., producer 1475); and 2) a new producer com-
mand is invoked with the parameters of table 2 set as follows:
a) call type is sticky subscription; b) caller producer is the
producer key of the caller child producer (e.g., producer
1475); c) called producer is the producer key of the called
parent producer to be created (e.g., producer 1480), that pro-
ducer key being formed using the parent class, instance, and
method key from the sticky subscription characteristics for
the parent producer to be created (FIG. 14A, columns 1430
and 1435 and 1437 (if the instance key is empty, the instance
key of caller child producer is used); and d) the link mode for
the called parent producer (figured 14 A, link mode in column
1425, and e) the dependency determination producer refer-
ence extracted from the dependency determination producer
reference column 1421 of subscription log 14A for the given
sticky subscription.

FIG. 19 is a flow diagram for block 1630 of FIG. 16
according to one embodiment of the invention. Thus, control
flows from block 1625 to block 1900 in block 1630. FIG. 19
is very similar to FIG. 18. Specifically, blocks 1910, 1915,
1920, and 1930 of FIG. 19 are identical to blocks 1810, 1815,
1820, and 1830; while block 1900 and 1925 differ from
blocks 1800 and 1825. As such, only the difference will be
described here.

US 9,424,050 B2

79

Block 1900 indicates the flow is performed for each regis-
tered subscription, whereas block 1800 indicates the flow is
performed for each instantiated producer. Thus, where the
flow of FIG. 18 is centered on a single subscription and
scanning all producers, the flow of FIG. 19 is centered on a
single producer and scanning all subscriptions.

Block 1925 is the same as block 1825, with the exception
that the absorbing subscription is marked as incomplete. With
reference to the embodiment of the invention shown in FIG.
14 A, the completed column 1420 at the appropriate row is
updated to indicate incomplete.

FIG. 20 is a flow diagram for blocks 1635 and 1670 of FIG.
16 according to one embodiment of the invention. Thus,
control flows from block 1605 and block 1630 to block 2005
in blocks 1635 and 1670. In block 2005, itis determined ifthis
iteration of the flow diagram of FIG. 16 was invoked due to a
dependency (e.g., from block 1630 (block 1920) or 1650
(blocks 1720, 1750 or 1745/1820) of a prior iteration). If not,
control passes to block 1640 or 1675 depending from where
the flow was entered (from block 1630 or 1605).

In block 2010, it is determined if the flow was called due to
a sticky subscription or non-subscription upwardly declared
situation. If not, control passes to block 2015; otherwise,
control passes to block 2020. Block 2010 is performed by
checking the call type parameter from Table 2 (i.e., whether
the call type is sticky subscription or non-subscription
upwardly declared or not). With reference to the embodi-
ments of the invention shown in FIGS. 18 and 19, if the new
producer command was invoked from blocks 1820 or 1920.

In block 2020, the current parent producer is linked to the
caller child producer. With reference to the embodiments of
the invention shown in FIGS. 11C and 14C, the called parent
producer (e.g., producer 1480) identified by the parameter
from the called producer column of table 2 is linked in the
producer graph(s) structure of FIG. 11C to the caller child
producer (e.g., producer 1475) identified by the parameter
from the caller producer column of table 2, using the link
mode and dependency determination producer reference
identified by the parameter from the link mode and depen-
dency determination producer reference columns of Table 2.
If the parent existed previously, the behavior of block 2020
mimics the behavior of an absorbing subscription depen-
dency in the sense that a single argument can be mapped to
zero or more child producers.

In block 2015, the caller parent producer is linked to the
current called child producer. With reference to the embodi-
ment of the invention shown in FIG. 11C, the caller parent
producer identified by the parameter from the caller producer
column of table 2 is linked in the producer graph(s) structure
of FIG. 11C to the called child producer identified by the
parameter from the called producer column of table 2, using
the dependency determination producer reference identified
by the dependency determination producer reference column
of Table 2. From blocks 2015 and 2020, control passes to
block 1640 or 1675 depending for where the flow was entered
(from block 1605 or 1630).

FIG. 21A is a flow diagram for overriding producers
according to one embodiment of the invention. With refer-
ence to FIG. 10, the flow of FIG. 21A is performed by the
override producer module 1045 (or, as described with refer-
ence to alternative embodiments regarding FIG. 10, the mod-
ule that handles overrides and unoverrides).

Responsive to an override producer command (block
2110), control passes to block 2120. In block 2120, a new
producer command is invoked for the producer identified by
the override producer command and control passes to block
2130. Block 2120 is performed in one embodiment of the

20

40

45

55

80

invention in case the producer to be overridden has not yet
been instantiated, as well as to mark the producer as unex-
ecuted (block 1640 or 1680) and log it on the execution start
log (block 1665). An alternative embodiment of the invention
that does not allow the overriding of a producer that is not yet
instantiated would perform an additional check between
blocks 1605 and 1610 to determine if this new producer
command was called responsive to an override producer com-
mand, and to indicate an error if this new producer command
was called responsive to an override producer command.

Inblock 2130, the output in the producer output cache (and
in the instance if a field) is set and the producer is marked as
overridden.

FIG. 21B is a flow diagram for overriding producer execu-
tion modes according to one embodiment of the invention.
With reference to FIG. 10, the flow of FIG. 21B is performed
by the parallelization module 1076 (or, as described with
reference to alternative embodiments regarding FIG. 10, the
module that handles parallelization).

Responsive to an override execution mode command
(block 2150), control passes to block 2155. In block 2155, the
producer execution mode setting is overridden in the pro-
ducer graph structure 1060.

FIG. 21C is a flow diagram for overriding producer execu-
tion modes according to one embodiment of the invention.
With reference to FIG. 10, the flow of FIG. 21C is performed
by the parallelization module 1076 (or, as described with
reference to alternative embodiments regarding FIG. 10, the
module that handles parallelization).

Responsive to a runtime execution mode setting override
command (block 2160), control passes to block 2165. In
block 2165, the producer execution mode setting is overrid-
den globally in the runtime setting structure 1048.

FIG. 21D is a flow diagram for overriding producer execu-
tion modes according to one embodiment of the invention.
With reference to FIG. 10, the flow of FIG. 21D is performed
by the parallelization module 1076 (or, as described with
reference to alternative embodiments regarding FIG. 10, the
module that handles parallelization).

Responsive to a configurable execution mode decision
structure override producer command (block 2170), control
passes to block 2175. In block 2175, the producer execution
mode setting is overridden globally in the producer-based
configurable decision structure on a class basis, a method
basis, an instance basis, or a combination of any of the above.

Global Execute Commands

FIG. 22A is a part of a flow diagram for execution of the
current producer graph(s) according to one embodiment of
the invention; while FIG. 22B is another part of a flow dia-
gram for execution of the current producer graph(s) according
to one embodiment of the invention. With reference to FIG.
10, the flow of FIG. 22 is performed by the producer graph
execution module 1070.

Responsive to a global execute command, block 2200
shows that a set of candidate producers is selected to be
executed based on the producers on the execution start log and
control passes to block 2205. In one embodiment of the
invention the overridden producers are marked as unexecuted
and execution thereof returns their overridden result (as
opposed to causing their method to be executed), the current
set of candidate producers is the producers on the execution
start log. While one embodiment of the invention is described
above in which overridden producers are marked as unex-
ecuted and execution thereof returns their overridden result
(as opposed to causing their method to be executed), alterna-
tive embodiments may operate differently (e.g., mark over-
ridden producers as executed and when selecting the current

US 9,424,050 B2

81

set of candidate producers, the independent producers of the
execution start log and the parents of overridden producers on
the execution start log are selected).

Inblock 2205, a subset of producers ready for execution is
selected from the set of candidate producers and control
passes to block 2207. An exemplary manner of performing
block 2205 is described later herein.

In block 2207, the producers in the current set of ready
producers are executed with parallelization if parallelization
is enabled. An exemplary manner of performing block 2207 is
described later herein. Control passes from block 2207 to
block 2208 afterwards.

In block 2208, a task is read and removed from one of the
result task queues of the supported execution modes. In the
current examples, the result task queues include MP_RE-
SULT_TASK_QUEUE, MT_RESULT_TASK_QUEUE,
and LOCAL_RESULT_TASK_QUEUE. From block 2208,
control passes to block 2209.

In block 2209, the runtime determines if post-treatment of
producers has to be skipped. If benchmarking is enabled,
producers may be executed locally as well as multiprocessed.
Thus, post-treatment of the producers is skipped after local
execution. More details of benchmarking are discussed
below. Referring back to FIG. 22 A, if post-treatment has to be
skipped, then control passes to block 2248 in FIG. 22B.
Otherwise, control passes to block 2210.

In block 2210, the producers of the current set of ready
producers are sorted by type—standard producers go to block
2220 and dependency determination producers go to block
2235. In one embodiment of the invention, block 2210 is
performed by checking the return class of the producer. With
reference to the FIGS. 10 and 11D, the method tracking
structure is accessed to determine if the output class of the
producer is DEP, and thus this producer is a dependency
determination producer.

Inblock 2220, for those parents, if any, that have an absorb-
ing subscription on any of these executed standard producers,
the subscription is marked as incomplete. With reference to
FIG. 14 A, the appropriate row of the completed column 1420
is set to indicate incomplete.

In block 2235, a new producer command is executed for
any discovered producers, and subscription logging and pro-
cessing is performed for any subscriptions, then control
passes to block 2240. The new producer command part of
block 2235 is performed in similar manner to block 1750,
while the subscription logging and processing is performed in
similar manner to blocks 1740 and 1745.

In block 2240, add to the set of candidate producers newly
added to the execution start log. From block 2240, control
passes to block 2245. Block 2240 is performed in similar
manner to block 2200, except only producers newly added to
the execution start log as a result of block 2235 are added to
the set of candidate producers.

Inblock 2245, the producers that were executed are marked
as executed, the producer output caching (and instance cach-
ing) are updated as necessary, the producer metrics (if
acquired) are updated in the producer graph structure 1060 in
FIG. 10, any parent producers of the producers that were
executed are added to the current set of candidate producers,
and the producers that were executed are removed from the
current set of candidate and ready producers. In some
embodiments, the producer metrics may be updated by read-
ing the corresponding task metrics and the corresponding job
reference. Using the job reference, the job metrics may be
read from a job metrics map. Alternatively, the producer
metrics may be updated by reading the task metrics and the
job metrics if a job metrics map is not used. More details of

25

35

40

45

55

82

the task metrics, the job metrics, and the job metrics map are
discussed below. From block 2245, control passes to block
2248.

In block 2248, the result task queues are checked to deter-
mine if all of them are empty. If at least one of the result task
queues is not empty, then control passes back to block 2208 to
continue process the result in the non-empty result task
queue(s). Otherwise, if all of the result task queues are empty,
then control passes to block 2250.

Inblock 2250, it is determined if the set of ready producers
is empty. If not, control passes back to block 2205; otherwise,
control passes to block 2255.

In block 2255, it is determined in all subscriptions have
been completed. If so, control passes to block 2265 where the
flow diagram ends; otherwise, control passes to block 2260.
With reference to the embodiment of the invention in FIG.
14A, the subscription type column 1405 and the complete
column 1420 are scanned for any absorbing subscriptions that
are not completed.

In block 2260, the incomplete absorbing subscriptions are
processed and control passes back to block 2205. An exem-
plary manner of performing block 2260 is described later
herein.

FIG. 23 is a flow diagram for block 2205 of FIG. 22
according to one embodiment of the invention. Thus, control
flows from block 2200 to block 2305 in block 2205. In block
2305, for each producer in the set of candidate producers, the
following blocks 2310-2325 are performed.

In block 2310, it is determined if the producer has any
absorbing subscription dependency that is incomplete. If so,
control passes to block 2325; otherwise, control passes to
block 2315. With reference to the embodiment of FIG. 14A,
the subscriber’s producer key column 1400 and subscription
type column 1405 is scanned for a matching to the current
selected producer and absorbing subscription type; and if a
match is found, the completed column 1420 at the appropriate
row is checked to determine the status of that absorbing
subscription dependency.

In block 2315, it is determined if the producers on which
the currently selected producer depends are executed. If not,
control passes to block 2315; otherwise, control passes to
block 2320. With regard to the embodiment of the invention
shown in FIG. 11C, the incremental execution markings col-
umn 1180 for the rows of the child dependencies are checked
to determined the execution status of the currently selected
producer’s children.

In block 2320, the currently selected candidate producer is
added to the current set of ready producers and control passes
to block 2325.

In block 2325, the flow ends for the current produced
selected in block 2305.

FIG. 24 is a flow diagram for block 2260 of FIG. 22B
according to one embodiment of the invention. Thus, control
flows from block 2255 to block 2505 in block 2260. In block
2505, for each producer with an absorbing subscription
dependency that is incomplete, the following blocks 2510-
2525 are performed.

In block 2510, it is determined if all matching producers
have been executed. If so, control passes to block 2515;
otherwise, control passes to block 2525. With reference to the
embodiments of FIGS. 11C and 14 A, the matching producers
column 1415 at the appropriate row is access to determine the
matching producers, and the incremental execution column
1180 at the appropriate rows is checked for each of the match-
ing producers.

In block 2515, the absorbing subscription is marked as
complete and control passes to block 2520. With reference to

US 9,424,050 B2

83
the embodiments of FIG. 14A, the complete column 1420 at
the appropriate row is set to indicate complete.

Inblock 2520, the producer selected in block 2505 is added
to the current set of candidate producers and control passes to
block 2525.

In block 2525, the flow ends for the producer selected in
block 2505.

FIGS. 25 and 26 are flow diagrams for block 2207 of FIG.
22 according to one embodiment of the invention. Thus,
control flows from block 2205 to block 2610 in FIG. 25. In
block 2610, instantiation of various task queues for multipro-
cessing, multithreading, and local execution and a job for
multiprocessing is performed. An exemplary manner of per-
forming block 2610 is described later herein. From block
2610, control passes to block 2620.

In block 2620, the set of ready producers are scanned to
process the producers in the set one by one. From block 2620,
control passes to block 2622.

In block 2622, an execution mode of a producer is read
from a producer graph structure, such as the graph structure in
FIG. 11C. Then control passes to block 2625.

In block 2625, a task referencing the producer and the
output of the producer is created. From block 2625, control
passes to block 2630.

In block 2630, it is determined which execution mode the
producer should be executed in. In some embodiments, there
are three execution modes supported, namely, multiprocess-
ing, multithreading, and local execution. If the execution
mode is determined to be local execution, control passes to
block 2632. If the execution mode is determined to be multi-
threading, control passes to block 2634. Ifthe execution mode
is determined to be multiprocessing, control passes to block
2635.

In block 2632, the task of the producer is pushed into the
execution task queue for local execution, i.e., LOCAL_EX-
ECUTION_TASK_QUEUE. Then control passes to block
2640.

In block 2634, the task of the producer is pushed into the
execution task queue for multithreading, i.e., MT_EXECU-
TION_TASK_QUEUE. Then control passes to block 2640.

In block 2635, the task of the producer is pushed into the
execution task queue for multiprocessing, i.e., MP_EXECU-
TION_TASK_QUEUE. Then control passes to block 2636.
In block 2636, it is determined whether benchmarking
between distant execution and local execution is requested. If
not, control passes to block 2640. However, if benchmarking
is requested, control passes to block 2637.

In block 2637, the task pushed into MP_
EXECUTION_TASK_QUEUE is marked to skip post-ex-
ecution treatment. Then a new task referencing the producer
and the output of the producer is created and is pushed into the
execution task queue for local execution, i.e., LOCAL_EX-
ECUTION_TASK_QUEUE, as well in block 2638. Then
control passes to block 2639 to store in the task added to the
MP_EXECUTION_TASK_QUEUE a reference to the task
added to the LOCAL_EXECUTION_TASK_QUEUE for
later matching. After block 2639, control passes to block
2640.

In block 2640, it is determined if all producers in the set of
ready producers have been scanned. If not, control passes
back to block 2620 to continue scanning producers in the set
of ready producers. Otherwise, control passes to block 2642
in FIG. 26B.

In block 2642, the runtime determines if the MT_EXECU-
TION_TASK_QUEUE is empty. If so, control passes to
2660. Otherwise, control passes to block 2644.

15

25

40

45

84

In block 2644, the runtime initiates a thread pooling
mechanism if not already initiated. From block 2644, control
passes to block 2650.

In block 2650, a separate thread is instantiated to perform
multithreading on the tasks in MT_EXECUTION_
TASK_QUEUE. An exemplary manner of performing block
2650 is described later herein. From block 2650, control
passes to block 2660.

In block 2660, multiprocessing and local execution are
performed to execute the tasks in MP_EXECUTION_
TASK_QUEUE_and LOCAL_EXECUTION_TASK _
QUEUE. An exemplary manner of performing block 2660 is
described later herein. From block 2660, control passes to
block 2670.

In block 2670, it is determined if the current size of
MT_RESULT_TASK_QUEUE is equal to the initial size of
MT_EXECUTION_TASK_QUEUE. If not, then control
remains in block 2670 because multithreading has not been
completed yet on all tasks in MT_EXECUTION_
TASK_QUEUE. Otherwise, control passes from block 2670
to block 2690 and the process in block 2207 ends. Although
multithreading, multiprocessing, and local execution are per-
formed sequentially in the exemplary flow described above, it
should be appreciated that any combination of multithread-
ing, multiprocessing, and local execution may be performed
in parallel in some alternative embodiments.

FIGS. 27A and 27B are flow diagrams for block 2610 of
FIG. 26 according to one embodiment of the invention. Thus,
control flows from block 2205 to block 2710 in FIG. 27A. In
block 2710, it 1is determined if MT_RESULT_
TASK_QUEUE is instantiated. If yes, then MT_
RESULT_TASK_QUEUE is cleared in block 2715. Other-
wise, MT_RESULT_TASK_QUEUE is instantiated in block
2713. Then control passes from block 2713 or block 2715 to
block 2720.

In block 2720, it 1is determined if MT_
EXECUTION_TASK_QUEUE is instantiated. If yes, then
MT_EXECUTION_TASK_QUEUE is cleared in block
2725. Otherwise, MT_EXECUTION_TASK_QUEUE is
instantiated in block 2723. Then control passes from block
2723 or block 2725 to block 2730.

In block 2730, it is determined if MP_RESULT
TASK_QUEUE is instantiated. If yes, then MP_
RESULT_TASK_QUEUE is cleared in block 2735. Other-
wise, MP_RESULT_TASK_QUEUE is instantiated in block
2733. Then control passes from block 2733 or block 2735 to
block 2740.

In block 2740, it is determined if MP_
EXECUTION_TASK_QUEUE is instantiated. If yes, then
MP_EXECUTION_TASK_QUEUE is cleared in block
2745. Otherwise, MP_EXECUTION_TASK_QUEUE is
instantiated in block 2743. Then control passes from block
2743 or block 2745 to block 2750 in FIG. 27B.

In block 2750, it is determined if LOCAL_
RESULT_TASK_QUEUE is instantiated. If yes, then
LOCAL_RESULT_TASK_QUEUE is cleared in block 2755.
Otherwise, LOCAIL_RESULT_TASK_QUEUE is instanti-
ated in block 2753. Then control passes from block 2753 or
block 2755 to block 2760.

In block 2760, it is determined if LOCAL_
EXECUTION_TASK_QUEUE is instantiated. If yes, then
LOCAL_EXECUTION_TASK_QUEUE is cleared in block
2765. Otherwise, LOCAL_EXECUTION_TASK_QUEUE
is instantiated in block 2763. Then control passes from block
2763 or block 2765 to block 2620.

FIG. 28A is a flow diagram for a process to perform mul-
tithreading according to one embodiment of the invention. As

US 9,424,050 B2

85
discussed above, a separate thread is instantiated in block
2650 of FIG. 26 to perform multithreading.

In block 2820, it is determined if MT_
EXECUTION_TASK_QUEUE is empty. If the MT_EX-
ECUTION_TASK_QUEUE is empty, that is all task in
MT_EXECUTION_TASK_QUEUE have been fed to a cor-
responding execution thread, then the process ends. Other-
wise, that is, there is at least one task to be fed to an execution
thread, then control passes to block 2825 to determine if there
is any thread available in the pool. If there is no thread avail-
able in the pool, control remains in block 2825 until there is an
available thread. When there is an available thread, control
passes to block 2830.

In block 2830, a task is removed from MT_
EXECUTION_TASK_QUEUE and the removed task is fed
to the available thread. Then control passes back to block
2820 to repeat blocks 2820, 2825, and 2830 until all tasks
have been removed from MT_EXECUTION_
TASK_QUEUE. Note that the process in blocks 2820, 2825,
and 2830 may be performed by an instantiated thread in order
to avoid blocking the rest of the flow.

FIG. 28B is a flow diagram illustrating the execution of a
task within a thread along with optional metrics acquisition. If
instrumentation is requested, then the runtime starts measur-
ing task execution time in block 2810. Otherwise, block 2810
is skipped. From block 2810, control passes to block 2831. In
block 2831, a task within a thread is executed by calling the
method of the task with the appropriate instance and inputs.
When execution of the task is done, outputs and/or the modi-
fied instance are returned from the method and the thread is
terminated. From block 2831, control passes to block 2815. If
instrumentation is requested, then the runtime ends measur-
ing task execution time in block 2815. Otherwise, block 2815
is skipped.

FIG. 28C is a flow diagram for a process responsive to
thread termination callback according to one embodiment of
the invention. In block 2832, a thread termination callback is
received.

In block 2834, the output of the task within the terminated
thread and the metrics acquired (such as the task execution
time), if any, is stored in the task executed by the terminated
thread and the task with the output and the metrics acquired,
if any, is pushed into MT_RESULT_TASK_QUEUE. Then
control passes to block 2836. In block 2836, the terminated
thread is marked as available in the pool of threads.

FIGS. 29A and 29B are flow diagrams for block 2660 of
FIG. 26 according to one embodiment of the invention. Thus,
control flows from block 2650 to block 2910 in FIG. 29A.
Note that blocks that are performed for instrumentation, but
are not used to implement parallelization of producer execu-
tion, are illustrated with blocks having broken dashed bound-
aries in FIGS. 29A and 29B.

In block 2910, it is checked if MP_EXECUTION_
TASK_QUEUE is empty. If MP_EXECUTION_
TASK_QUEUE is empty, there is no task to be multipro-
cessed and thus, control passes to block 2670. Otherwise,
control passes to block 2915.

Inblock 2915, a job is instantiated and a job identifier (ID)
is allocated to the job. Furthermore, a TASKS_
LOCAL_MAP is instantiated in block 2915 as well. Then
control passes to block 2918. If instrumentation is requested,
block 2918 is performed to start measuring job overall time.
Otherwise, block 2918 is skipped. Then control passes to
block 2920.

In block 2920, a task is read and removed from MP_EX-
ECUTION_TASK_QUEUE. Control then passes to block
2921. If instrumentation is requested, block 2921 is per-

40

45

86

formed to start measuring task overall time. Otherwise, block
2921 is skipped. Then control passes to block 2923.

In block 2923, a unique task identifier (ID) is allocated to
the task and stored with the task reference in TASKS_LO-
CAL_MAP. Then control passes to block 2925 to instantiate
atask serialized form and fill the task serialized form with the
task ID, a class name, and a method name of the producer
corresponding to the task. Then control passes to block 2930.

In block 2930, a serialized form of each one of all input
producers and the underlying instance is found if already
created. Alternatively, if a serialized form is not yet created, it
is created in block 2930. Exemplary manner to perform block
2930 is discussed herein. From block 2930, control passes to
block 2960.

In block 2960, the task serialized form is added to a seri-
alized task execution queue of the job, namely, JOB.SERI-
ALIZED_TASKS_EXECUTION_QUEUE. Then control

passes to block 2965.
In block 2965, it is determined if MP_
EXECUTION_TASK_QUEUE is empty. If MP_EXECU-

TION_TASK_QUEUE is not empty, control passes back to
block 2920 to continue going through the remaining tasks in
MP_EXECUTION_TASK_QUEUE. Otherwise, control
passes to block 2970.

Inblock 2970, the job is sent to a grid of a number of distant
processors. The grid of processors performs distant comput-
ing to execute the job. Details of one exemplary flow of distant
computing are discussed herein. Then control passes to block
2972 to perform local execution. From block 2972, control
passes to block 2973.

In block 2973, it is determined if the job is done. If not,
control remains in block 2973 until the job is done. When the
job is done, control passes to block 2975 in FIG. 29B.

Referring to FIG. 29B, a job virtual local processing time is
set to zero in block 2975. According to one aspect of the
invention, the job virtual local processing time is the time
would have taken all the tasks of the job to be executed
locally. From block 2975, control is passed to block 2977.

In block 2977, a task is read and removed from the serial-
ized result queue of the job, ie., JOB.
SERIALIZED_TASKS_RESULTS_QUEUE. Then control
is passed to block 2979 to find the task reference using the
task ID stored in the TASKS_LOCAL_MAP. Then control
passes to block 2980.

Ifinstrumentation is requested, block 2980 is performed to
determine the output serialized form size and to start measur-
ing local deserialization time of the output. Otherwise, block
2980 is skipped and control passes to block 2981. In block
2981, the output in the task output is deserialized. From block
2981, control passes to block 2982. Again, if instrumentation
is requested, block 2982 is performed to end measuring local
deserialization time. Further, if instrumentation is requested,
blocks 2984, 2985, 2987, and 2989 may be performed. Oth-
erwise, blocks 2984, 2985, 2987, and 2989 are skipped and
control passes from block 2981 to block 2990.

In block 2984, the runtime ends measuring task overall
time and then removes local execution time from the task
overall time. From block 2984, control passes to block 2985.

In block 2985, it is determined whether benchmarking is
requested. If benchmarking is requested, control passes to
block 2987 and then to block 2989. Otherwise, control passes
to 2989 from 2985 to skip block 2987.

As discussed above with reference to FIGS. 25 and 26,
benchmarking is requested to compare local and distant
execution times. Thus, a task is executed both locally and
distantly using multiprocessing if benchmarking is requested
according to one embodiment of the invention. Thus, if

US 9,424,050 B2

87

benchmarking is requested, the runtime may find a corre-
sponding task in LOCAL_RESULT_TASK_QUEUE in
block 2987. Further, the runtime may add the local processing
time stored in the task to the job virtual local processing time.
As such, the job virtual local processing time equals to the
sum of the local processing times of all tasks in the job when
all tasks have been executed. From block 2987, control passes
to block 2989.

In block 2989, the task metrics, such as task overall time,
along with the job ID are added to the task. Then control
passes to block 2990. Note that both blocks 2987 and 2989 are
performed if instrumentation is requested. Otherwise, both
blocks 2987 and 2989 may be skipped.

In block 2990, the task is pushed in MP_RESULT_
TASK_QUEUE. Then control passes to block 2991. In block
2991, it is determined if JOB.SERIALIZED_TASKS_RE-
SULTS_QUEUE is empty. If not, then control passes back to
block 2977 to continue reading tasks from the queue and
deserializing the outputs. Otherwise, control passes to block
2992 if instrumentation is requested. If instrumentation is not
requested, then control passes from block 2991 to block 2670
in FIG. 26B.

If instrumentation is requested, blocks 2992, 2993, 2995,
2996, and 2997 may be performed. Otherwise, blocks 2992,
2993, 2995, 2996, and 2997 may be skipped. In block 2992,
the measuring of job overall time is ended and then local
execution time is removed from the job overall time. From
block 2992, control passes to block 2993.

In block 2993, it is determined if benchmarking is
requested. If benchmarking is requested, control passes to
block 2995. In block 2995, the job speedup is computed by
dividing the job virtual local processing time with the job
overall time. Then control passes from block 2995 to block
2996. In block 2996, job efficiency is computed by dividing
the job speedup with the number of processors available and
dedicated to the execution of the job in the grid. From block
2996, control passes to block 2997. Otherwise, if benchmark-
ing is not requested, control passes from block 2993 to block
2997 directly.

Inblock 2997, the metrics of the job (e.g., job speedup, job
efficiency, job overall time, etc.) are added to each task within
the job. From block 2997, control passes to block 2670 in
FIG. 26B.

FIG. 30 shows a flow diagram for block 2930 of FIG. 29A
according to one embodiment of the invention. Thus, control
flows from block 2925 to block 3010 in FIG. 30. In block
3010, itis determined if a serialized form of an input producer
or of the underlying instance is already created in the SERI-
ALIZED_FORM_LOCAL_MAP based on the input pro-
ducer key or the underlying instance key. If the serialized
form is already created, control passes to block 3015. Other-
wise, control passes to block 3020.

In block 3015, the serialized form ID and the serialized
form are read from the SERIALIZED FORM_
LOCAL_MAP. Then control passes to block 3040.

Inblock 3020, a serialized form identifier is allocated to the
input producer or the underlying instance. Then control
passes to block 3022.

In block 3022, the measurement of local serialization time
is started. Then control passes to block 3024.

In block 3024, a serialized form is created for the input
producer or the underlying instance. Then control passes to
block 3026.

In block 3026, the measurement of local serialization time
is ended. Then control passes to block 3028.

In block 3028, the input serialized form size is determined.
Then control passes to block 3030.

10

15

20

25

30

35

40

45

50

55

60

65

88

In block 3030, the input producer key or the underlying
instance key, the serialized form ID, and the serialized form
are stored in the SERIALIZED FORM_LOCAL_MAP. The
SERIALIZED_FORM_LOCAL_MAP may be global or
allocated and freed on a job by job basis, depending on
various factors, such as memory requirements, performance
requirements, etc. Then control passes to block 3034.

In block 3034, the input serialized form size and the seri-
alization time are stored with the serialized form ID in the
SERIALIZED_FORM_LOCAL_MAP. Then control passes
to block 3040. Note that blocks 3022, 3026, 3028, and 3034
described above are performed if instrumentation is
requested. Blocks 3022, 3026, 3028, and 3034 may be
skipped if instrumentation is not requested.

In block 3040, it is determined if the serialized form ID is
in the JOB.SERIALIZED_FORM_MAP. If yes, then control
passes to block 3045. Otherwise, control passes to block
3043.

In block 3043, the serialized form ID and the serialized
form are stored in JOB.SERIALIZED _FORMS_MAP. Then
control passes to block 3045.

Inblock 3045, the serialized form ID is added as an input or
as an underlying instance to the task serialized form. From
block 3045, control passes to block 3050.

In block 3050, it is determined if there is any more input
producer not yet processed or if the underlying instance is not
yet processed. If there is, then control passes back to block
3010. Otherwise, control passes to block 2960 in FIG. 29A.

FIGS. 31A and 31B show flow diagrams of distant com-
puting for multiprocessing according to one embodiment of
the invention. Again, blocks illustrated with broken dash line
are performed if instrumentation is requested and may be
skipped if instrumentation is not requested. As discussed
above, a job including a number of tasks corresponding to
producers is dispatched to a grid of processors for execution.
Each processor in the grid, also referred to as a worker, may
cache the JOB_SERIALIZED FORMS_MAP. For example,
if a job holds a thousand tasks and there are ten workers
executing these tasks, the JOB_SERIALIZED
FORMS_MAP is sent once by the grid dispatcher to each
worker, and cached at worker level. When the job is finished,
the grid dispatcher sends a command to the worker in order to
free up the cache. The flow starts at block 3108.

In block 3108, the JOB_SERIALIZED FORMS_MAP
along with the task serialized form holding input IDs, class
name, and method name are received from the grid dis-
patcher. Then control passes to block 3110. In block 3110, a
class is located using the class name and a method is located
using the method name. The class and the method are loaded
to reconstitute a task. Then control passes to block 3112.

In block 3112, a task input ID or the instance ID is looked
up from the JOB.SERIALIZED_FORMS_MAP. Then con-
trol passes to block 3120.

In block 3120, it is determined if the input ID is found. If
not, control passes to block 3190 to return an error. Other-
wise, control passes to block 3130.

In block 3130, it is determined if the JOB.
SERIALIZED_FORMS_MAP entry corresponding to the
input ID is already deserialized. If it is already deserialized,
then control passes to block 3150. Otherwise, control passes
to block 3132.

In block 3150, the deserialized form of the input is
extracted. Then control passes to block 3155.

In block 3132, the measurement of distant deserialization
time is started. Then control passes to block 3134 to deseri-
alize the JOB.SERIALIZED_FORMS_MAP entry corre-
sponding to the input ID. From block 3134, control passes to

US 9,424,050 B2

89

block 3136. In block 3136, the measurement of distant dese-
rialization time is ended. Then control passes to block 3138.

In block 3138, the corresponding entry in the JOB.SERI-
ALIZED_FORMS_MAP is enriched with the deserialized
form. Then control passes to block 3143.

Inblock 3143, the instance or the standard input is added to
the task definition. Then control passes to block 3155.

In block 3155, it is determined if all input IDs (i.e., all
standard inputs along with the underlying instance) have been
processed. In other words, it is determined if the task has been
completely reconstituted or deserialized. If so, control passes
to block 3160 in FIG. 31B. Otherwise, control passes back to
block 3112 to process the next input ID.

Referring to FIG. 31B, the measurement of distant process-
ing time is started in block 3160. Then control passes to block
3162.

In block 3162, the method with the appropriate instance
and inputs is called. As a consequence of the execution, the
method may return an output and/or modify the instance of
the method. The runtime receives the output returned from the
method and/or the modified instance. Then control passes
from block 3162 to block 3166.

In block 3166, the measurement of distant processing time
is ended. Then control passes to block 3170.

In block 3170, the measurement of distant serialization
time is started. Then control passes to block 3172 to serialize
the returned output and/or the modified instance and attach
the serialized output and/or the serialized modified instance
to the task. Then control passes to block 3174. In block 3174,
the measurement of distant serialization time is ended. From
block 3174, control passes to block 3176.

In block 3176, the metrics (e.g., distant serialization time,
distant deserialization time, etc.) are stored in the task. Then
control passes to block 3180.

Inblock 3180, the task is sent back to the grid dispatcher of
the runtime and the flow ends. Again, blocks illustrated with
broken dash line are performed if instrumentation is
requested and may be skipped if instrumentation is not
requested.

FIG. 32 shows a flow diagram for block 2972 of FIG. 29A
according to one embodiment of the invention. Thus, control
flows from block 2970 to block 3202 in FIG. 32. Again,
blocks illustrated with broken dash line are performed if
instrumentation is requested and may be skipped if instru-
mentation is not requested.

In block 3202, the measurement of local execution time is
started. Then control passes to block 3210.

In block 3210, a task is removed from LOCAL_EXECU-
TION_TASK_QUEUE and is executed locally by calling the
method with the appropriate instance and inputs. When
execution is done, the method returns outputs and/or the
modified instance of the method. Then control passes to block
3212.

In block 3212, the measurement of local execution time is
ended. Then control passes to block 3220.

In block 3220, the output of the task is stored in the task.
Then control passes to block 3223.

In block 3223, the metrics (e.g., local execution time) is
stored in the task as well. Then control passes to block 3230.

In block 3230, the task is pushed into the LOCAL_RE-
SULT_TASK_QUEUE. From block 3230, control passes to
block 3240.

In block 3240, it is determined if the LOCAL_EXECU-
TION_TASK_QUEUE is empty. If the queue is empty, then
control passes to block 2973 in FIG. 29A. Otherwise, control
passes back to block 3202 to repeat the process to execute
another task locally.

15

30

35

40

45

50

55

65

90

Alternative Embodiments

While the flow diagrams in the figures show a particular
order of operations performed by certain embodiments of the
invention, it should be understood that such order is exem-
plary (e.g., alternative embodiments may perform the opera-
tions in a different order, combine certain operations, overlap
certain operations, etc.)

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit
and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting.

What is claimed is:

1. A computer implemented method comprising:

receiving a request to run an application program, wherein

object-oriented code of the application program
includes methods and producer dependency declara-
tions, wherein a producer is an instance of a class and a
specific method of that class, wherein each of the pro-
ducer dependency declarations is for one of the specific
methods and is to identify at run time a set of zero or
more producers; and

parallelizing execution of the application program based

on dependencies between producers of the application
program using the runtime, wherein execution of each of
the producers requires outputs of all of the set of pro-
ducers identified by the producer dependency declara-
tion for the specific method of that producer be available
before the runtime begins executing the specific method
of that producer.

2. The method of claim 1, wherein parallelizing execution
of the application program comprises:

identifying a set of ready producers among the producers

of the application program;

determining an execution mode of each producer of the set

of ready producers; and

causing each producer of the set of ready producers to be

executed in a corresponding execution mode.

3. The method of claim 2, wherein the execution mode is
one of a local execution mode, a multiprocessing mode, and a
multithreading mode.

4. The method of claim 2, wherein determining the execu-
tion mode of each producer of the set of ready producers
comprises:

checking an execution mode setting of a method of a cor-

responding producer; and

overriding the execution mode setting of the corresponding

producer if an end user selects another execution mode
on at least one of a class basis, a method basis, and an
instance basis.

5. The method of claim 1, further comprising:

acquiring metrics related to the execution of the application

program using the runtime on a producer by producer
basis in response to an instrumentation request, com-
prising,

measuring execution time of the application program on a

producer by producer basis.

6. The method of claim 5, wherein acquiring metrics fur-
ther comprises:

measuring execution time of the application program on a

job basis, wherein a job comprises a plurality of produc-
ers to be multiprocessed.

7. An apparatus comprising:

a computer with a runtime to run object-oriented code with

producer dependency declarations for specific methods
and execution mode settings for those methods, wherein

US 9,424,050 B2

91

aproducer is an instance of a class and a specific method
of' that class, wherein each producer dependency decla-
ration is for one of the specific methods and is to identity
at run time a set of zero or more producers, wherein
execution of each producer requires outputs of all of the
set of producers identified by the producer dependency
declaration for the specific method of that producer be
available before the runtime begins executing the spe-
cific method of that producer, and
wherein said runtime includes,
an automated producer graph execution module to
execute a plurality of producers to determine an out-
put of a producer of interest, wherein the automated
producer graph execution module comprises,
a parallelization module to cause zero or more of the
plurality of producers to be executed in parallel.

8. The apparatus of claim 7, wherein the automated pro-
ducer graph execution module further comprises:

a local execution module coupled to the parallelization
module to cause a producer having an execution mode of
local execution to be executed locally.

9. The apparatus of claim 8, wherein the automated pro-
ducer graph execution module further comprises a metrics
acquisition module to measure local execution time of the
producer having the execution mode of local execution if
instrumentation is requested.

10. The apparatus of claim 7, wherein the automated pro-
ducer graph execution module further comprises:

a multithreading module coupled to the parallelization
module to initiate a thread pooling mechanism and to
feed available threads with multithreading tasks corre-
sponding to producers having an execution mode of
multithreading.

11. The apparatus of claim 10, wherein the automated
producer graph execution module further comprises a metrics
acquisition module to measure execution time of each of the
producers having the execution mode of multithreading if
instrumentation is requested.

12. The apparatus of claim 7, wherein the automated pro-
ducer graph execution module further comprises:

a multiprocessing module coupled to the parallelization
module to instantiate a job, to serialize multiprocessing
tasks corresponding to producers having an execution
mode of multiprocessing, to serialize inputs and under-
lying instances of the multiprocessing tasks, to add the
serialized multiprocessing tasks and the serialized
inputs and the serialized underlying instances to the job,
and to provide the job to a grid dispatcher, the grid
dispatcher to dispatch the job to a grid having a plurality
of'processors to execute the multiprocessing tasks in the
job.

13. The apparatus of claim 12, wherein the automated
producer graph execution module further comprises a metrics
acquisition module is to measure execution time of each of
the multiprocessing tasks corresponding to the producers
having the execution mode of multiprocessing, serialization
time and size of the multiprocessing task inputs, outputs, and
instances within the job, deserialization time and size of the
multiprocessing task inputs, outputs, and instances within the
job, and execution time of the multiprocessing tasks within
the job if instrumentation is requested.

14. The apparatus of claim 7, wherein the runtime further
comprises:

a producer-based configurable decision structure coupled

to the parallelization module to store execution mode

20

25

30

40

45

92

based on a combination of one or more of a class key, an
instance key, and a method key from a runtime client;
and

an automated producer graph generation module operable
to determine the execution mode based on the execution
mode selections, the execution mode settings, and a
runtime override setting, if any.

15. The apparatus of claim 7, wherein the runtime further

comprises:

a producer graph structure coupled to the automated pro-
ducer graph execution module to store outputs of the
plurality of producers, the execution mode settings, and
metrics acquired, if any.

16. A non-transitory machine-readable storage medium

that provides:

an application program, object-oriented code of the appli-
cation program including:

a plurality of class definitions each including,

a set of one or more fields,

a set of one or more methods,

a producer dependency declaration for each method
of said set of methods, wherein the producer depen-
dency declaration for a given one of said methods is
used by a runtime to identify at run time a set of
zero or more producers that are to be executed
substantially in parallel, and wherein a producer is
an instance of one of the plurality of classes at run
time and a method of that class wherein execution
of each producer requires outputs

of all of the set of producers identified by the producer
dependency declaration for the method of that pro-
ducer be available before the runtime begins
executing the method of that producer.

17. The machine-readable medium of claim 16, wherein
the object-oriented code further includes:

an execution mode setting for each method of said sets of
methods.

18. The machine-readable medium of claim 17, wherein
the execution mode is one of a local execution mode, a mul-
tiprocessing mode, and a multithreading mode.

19. The machine-readable medium of claim 17, wherein
one or more of the plurality of class definitions further
include:

one or more execution mode settings provided in annota-
tion.

20. The machine-readable medium of claim 16, wherein

the object-oriented code further includes:

an override runtime execution mode setting command to
override the execution mode at runtime level.

21. The machine-readable medium of claim 16, wherein

the object-oriented code further includes:

a configurable decision tree execution mode setting com-
mand to override the execution mode on a basis of at
least one of a class, a method, and an instance.

22. The machine-readable medium of claim 16, wherein
the runtime is operable to automatically generate and execute
aproducer graph for a designate producer of interest through
instantiation, as necessary, and linking of other producers
based on the producer dependency declarations of the meth-
ods of the producer and interest and the other producers,
wherein the runtime is operate to execute at least two of the
producers in the producer graph in parallel based on depen-
dencies between the producers as indicate in the producer
graph.

